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The problem
Decomposing symmetric tensors

You have...
F = −4xy + 2xz + 2yz + z2.

You want...
F = (x − y)2 − 2(x + y)2 + (x + y + z)2.

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial



3

The problem
Decomposing symmetric tensors

You have...

F = −4xy + 2xz + 2yz + z2,

f = Fx=1 = −4y + 2z + 2yz + z2.

You want...

F = (x − y)2 − 2(x + y)2 + (x + y + z)2.

f = Fx=1 = (1 − y)2 − 2(1 + y)2 + (1 + y + z)2.
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Ideas
Move and solve the problem in the dual space

R = K[x1, . . . ,xn].

Apolar polynomial

f = ∑
∣α∣≤d

fαxα ∈ R≤d

↓

f ∗ ∶ R≤d → K,

g = ∑
∣α∣≤d

gαxα ↦ ⟨f ,g⟩ = ∑
∣α∣≤d

fαgα
(d
α
)
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Ideas
Move and solve the problem in the dual space

Apolar polynomial

f ∗ = ( ∑
∣α∣≤d

fαxα)∗ ∶ R≤d → K,

g = ∑
∣α∣≤d

gαxα ↦ ⟨f ,g⟩ = ∑
∣α∣≤d

fαgα
(d
α
)

Dual map

τ ∶ R≤d ↪ R∗

≤d ,

f =
r

∑
i=1
λi(1 + l1ix1 + ⋅ ⋅ ⋅ + lnixn)d ↦ f ∗ =

r

∑
i=1
λi1(l1i ,...,lni).
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Ideas
Move and solve the problem in the dual space

Dual map

τ ∶ R≤d ↪ R∗

≤d ,

f =
r

∑
i=1
λi(1 + l1ix1 + ⋅ ⋅ ⋅ + lnixn)d ↦ f ∗ =

r

∑
i=1
λi1(l1i ,...,lni).

Aim
Find Λ ∈ R∗ that restricts to f ∗ on R≤d :

Λ∣R≤d = f ∗.
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Ideas
Use Henkel operators

Let Λ ∈ R∗. Define
▸ the Henkel operator of Λ as

HΛ ∶ R → R∗,

r ↦ r ⋆ Λ = (t ↦ Λ(rt)),

▸ IΛ = ker HΛ,
▸ AΛ = R/IΛ,
▸ the multiplication by r operators on AΛ and A∗Λ as

Mr ∶ AΛ → AΛ, M t
r ∶ A∗Λ → A∗Λ,

t ↦ r ⋅ t , φ↦ r ⋆ φ.
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Ideas
Use Henkel operators

[BCMT] Theorem
Let Λ ∈ R∗ and r ∈ N>0. The following are equivalent:

▸ There exist non-zero constants {λi}i∈{1,...,r} and distinct points
{ζi}i∈{1,...,r} ⊆ Kn such that

Λ =
r

∑
i=1
λi1ζi .

▸ rkHΛ = r and IΛ is a radical ideal.
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Ideas
Use Henkel operators

Theorem
Let Λ ∈ R∗ such that IΛ is 0-dimensional and AΛ is an r -dimensional
K-vector space. Then the following are equivalent:

▸ Up to K-multiplication, there are r distinct common eigenvectors
of {M t

xi
}i∈{1,...,n}.

▸ IΛ is radical.
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Ideas
Use Henkel operators

Theorem
Let Λ ∈ R∗ such that IΛ is 0-dimensional and AΛ is an r -dimensional
K-vector space.

▸ V(IΛ) = {ζ1, . . . , ζs} is radical if and only if s = r since AΛ = R/IΛ and
dim(AΛ) = r .

Then the following are equivalent:
▸ Up to K-multiplication, there are r distinct common eigenvectors

of {M t
xi
}i∈{1,...,n}.

▸ Eigenvalues of Mxi and M t
xi

are {xi(ζ1), . . . , xi(ζs)}. [Stickelberger]
▸ v is an eigenvector for every {M t

xi
}i∈{1,...,n} if and only if there exist

ζ1, . . . , ζs ∈ Kn and k ≠ 0 such that v = k1ζj .
▸ IΛ is radical.
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Ideas
Fill the Henkel matrix

Let f = −4y + 2z + 2yz + z2.
We know some entries of HΛ:

HΛ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 y z y2 yz z2

1 f ∗(1) f ∗(y) f ∗(z) f ∗(y2) f ∗(yz) f ∗(z2)
y f ∗(y) f ∗(y2) f ∗(yz)
z f ∗(z) f ∗(yz) f ∗(z2)
y2 f ∗(y2)
yz f ∗(yz) ?
z2 f ∗(z2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Ideas
Fill the Henkel matrix

Let f = −4y + 2z + 2yz + z2.

HΛ(h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 y z y2 yz z2

1 0 −2 1 0 1 1
y −2 0 1 h(3,0) h(2,1) h(1,2)
z 1 1 1 h(2,1) h(1,2) h(0,3)
y2 0 h(3,0) h(2,1) h(4,0) h(3,1) h(2,2)
yz 1 h(2,1) h(1,2) h(3,1) h(2,2) h(1,3)
z2 1 h(1,2) h(0,3) h(2,2) h(1,3) h(0,4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We want values for h such that rkHΛ = r and IΛ is radical.
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Ideas
Fill the Henkel matrix

Let f = −4y + 2z + 2yz + z2.

HΛ(h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 y z y2 yz z2

1 0 -2 1 0 1 1
y -2 0 1 h(3,0) h(2,1) h(1,2)
z 1 1 1 h(2,1) h(1,2) h(0,3)
y2 0 h(3,0) h(2,1) h(4,0) h(3,1) h(2,2)
yz 1 h(2,1) h(1,2) h(3,1) h(2,2) h(1,3)
z2 1 h(1,2) h(0,3) h(2,2) h(1,3) h(0,4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We guess that B = {1,y ,z} is a basis for AΛ, so that r = 3. Define

HB
Λ =

⎛
⎜⎜
⎝

0 -2 1
-2 0 1
1 1 1

⎞
⎟⎟
⎠
.
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Ideas
Fill the Henkel matrix

Let f = −4y + 2z + 2yz + z2.

HΛ(h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 y z y2 yz z2

1 0 -2 1 0 1 1
y −2 0 1 h(3,0) h(2,1) h(1,2)
z 1 1 1 h(2,1) h(1,2) h(0,3)
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We guess that B = {1,y ,z} is a basis for AΛ, so that r = 3. Define

HB
Λ =

⎛
⎜
⎝

0 −2 1
−2 0 1
1 1 1

⎞
⎟
⎠
, HB

y⋆Λ =
⎛
⎜⎜⎜
⎝

-2 0 1
0 h(3,0) h(2,1)

1 h(2,1) h(1,2)

⎞
⎟⎟⎟
⎠
.
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Ideas
Fill the Henkel matrix

Let f = −4y + 2z + 2yz + z2.
We guess that B = {1,y ,z} is a basis for AΛ, so that r = 3. Define

MB
y = HB

y⋆Λ(HB
Λ)−1 = (

0 1 0
− 3

8 h(3,0) + 1
4 h(2,1) 1

8 h(3,0) + 1
4 h(2,1) 1

4 h(3,0) + 1
2 h(2,1)

− 3
8 h(2,1) + 1

4 h(1,2) + 1
8

1
8 h(2,1) + 1

4 h(1,2) − 3
8

1
4 h(2,1) + 1

2 h(1,2) + 1
4

) ,

MB
z = HB

z⋆Λ(HB
Λ)−1 = (

0 0 1
− 3

8 h(2,1) + 1
4 h(1,2) + 1

8
1
8 h(2,1) + 1

4 h(1,2) − 3
8

1
4 h(2,1) + 1

2 h(1,2) + 1
4

− 3
8 h(1,2) + 1

4 h(0,3) + 1
8

1
8 h(1,2) + 1

4 h(0,3) − 3
8

1
4 h(1,2) + 1

2 h(0,3) + 1
4

) .
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Ideas
Fill the Henkel matrix

Let f = −4y + 2z + 2yz + z2.
We guess that B = {1,y ,z} is a basis for AΛ, so that r = 3. Define

MB
y = HB

y⋆Λ(HB
Λ)−1 = (

0 1 0
− 3

8 h(3,0) + 1
4 h(2,1) 1

8 h(3,0) + 1
4 h(2,1) 1

4 h(3,0) + 1
2 h(2,1)

− 3
8 h(2,1) + 1

4 h(1,2) + 1
8

1
8 h(2,1) + 1

4 h(1,2) − 3
8

1
4 h(2,1) + 1

2 h(1,2) + 1
4

) ,

MB
z = HB

z⋆Λ(HB
Λ)−1 = (

0 0 1
− 3

8 h(2,1) + 1
4 h(1,2) + 1

8
1
8 h(2,1) + 1

4 h(1,2) − 3
8

1
4 h(2,1) + 1

2 h(1,2) + 1
4

− 3
8 h(1,2) + 1

4 h(0,3) + 1
8

1
8 h(1,2) + 1

4 h(0,3) − 3
8

1
4 h(1,2) + 1

2 h(0,3) + 1
4

) .

We want multiplication operators to commute!

MB
y MB

z −MB
z MB

y = 0.

→ h(3,0) = −2, h(2,1) = 1, h(2,1) = 1, h(2,1) = 4.
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Ideas
Fill the Henkel matrix

Let f = −4y + 2z + 2yz + z2.

(MB
y )t =

⎛
⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟
⎠
→ Eigenspaces: ⟨(

1
−1
0

)⟩ , ⟨(
1
1
0

) ,(
0
0
1

)⟩ .

(MB
z )t =

⎛
⎜
⎝

0 0 3
4

0 0 3
4

1 1 5
2

⎞
⎟
⎠
→ Eigenspaces: ⟨(

1
−1
0

)⟩ , ⟨(
1
1
−

1
2

)⟩ , ⟨(
1
1
3

)⟩ .
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Ideas
Fill the Henkel matrix

Let f = −4y + 2z + 2yz + z2.

Common eigenspaces: ⟨
⎛
⎝

1
−1
0

⎞
⎠
⟩ , ⟨

⎛
⎜
⎝

1
1
− 1

2

⎞
⎟
⎠
⟩ , ⟨

⎛
⎝

1
1
3

⎞
⎠
⟩ .

Solve in λi ∶ f =λ1(1−1y + 0z)2 + λ2(1 + 1y−1
2

z)2 + λ3(1 + 1y + 3z)2
.

λ1 = 1 λ2 = −
8
7

λ3 =
1
7

Conclusion: f = (1 − y)2 − 8
7(1 + y − 1

2 z)2 + 1
7(1 + y + 3z)2

.
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STD algorithm
As proposed in [BCMT]

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial F(x0,x1, . . . ,xn) of degree d .
Output: A decomposition of F as F = ∑r

i=1 λiLd
i with r minimal.

▸ Compute the coefficients of f ∗: cα = aα(d
α
)
−1

, for ∣α∣ ≤ d .
▸ r ∶= 1.
▸ repeat

1. Compute a set B of monomials of degree at most d connected to
one with ∣B∣ = r .

2. Find parameters h s.t. det(HB
Λ) ≠ 0 and the operators

Mi = HB
xi⋆Λ
(HB

Λ)−1 commute.
3. If there is no solution, restart the loop with r ∶= r + 1.
4. Else compute the n × r eigenvalues ζi,j and the eigenvectors vj s.t.

Mivj = ζi,jvj, i = 1, . . . ,n, j = 1, . . . , r .

until the eigenvalues are simple.
▸ Solve the linear system in (lj)j=1,...,k : Λ = ∑r

i=1 lj1ζj where ζi ∈ Kn

are the eigenvectors found in step 4.
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The refinements
0) Essential variables

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial F(x0,x1, . . . ,xn) of degree d

written by using a general set of essential variables.
Output: A decomposition of f as F = ∑r

i=1 λiki(x)d with r minimal.

▸ Compute the coefficients of f ∗: cα = aα(d
α
)
−1

, for ∣α∣ ≤ d .
▸ r ∶= 1.
▸ repeat

1. Compute a set B of monomials of degree at most d connected to
one with ∣B∣ = r .

2. Find parameters h s.t. det(HB
Λ) ≠ 0 and the operators

Mi = HB
xi⋆Λ
(HB

Λ)−1 commute.
3. If there is no solution, restart the loop with r ∶= r + 1.
4. Else compute the n × r eigenvalues ζi,j and the eigenvectors vj s.t.

Mivj = ζi,jvj, i = 1, . . . ,n, j = 1, . . . , r .
until the eigenvalues are simple.

▸ Solve the linear system in (lj)j=1,...,k : Λ = ∑r
i=1 lj1ζj where ζi ∈ Kn

are the eigenvectors found in step 4.
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The refinements
0) Essential variables

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial F(x0,x1, . . . ,xn) of degree d

written by using a general set of essential variables.

▸ General: De-homog. by x0 implies decomp. of type

f =
r

∑
i=1
λi(1 + αi li(x1, . . . ,xn))d

▸ Essential variables:
x3 + (x + y + z)3

2 essential variables and rank 2⇒ Any basis made of 2 elements
⇒ we can recover at most 2 coefficients of the linear forms.
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The refinements
1) The starting r

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial F(x0,x1, . . . ,xn) of degree d .

written by using a general set of essential variables.
Output: A decomposition of F as F = ∑r

i=1 λiki(x)d with r minimal.

▸ Compute the coefficients of f ∗: cα = aα(d
α
)
−1

, for ∣α∣ ≤ d .

▸ r ∶= 1. r := #EssVar( f )?
▸ repeat

1. Compute a set B of monomials of degree at most d connected to
one with ∣B∣ = r .

2. Find parameters h s.t. det(HB
Λ) ≠ 0 and the operators

Mi = HB
xi⋆Λ
(HB

Λ)−1 commute.
3. If there is no solution, restart the loop with r ∶= r + 1.
4. Else compute the n × r eigenvalues ζi,j and the eigenvectors vj s.t.

Mivj = ζi,jvj, i = 1, . . . ,n, j = 1, . . . , r .
until the eigenvalues are simple.

▸ Solve the linear system in (lj)j=1,...,k : Λ = ∑r
i=1 lj1ζj where ζi ∈ Kn

are the eigenvectors found in step 4.
A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial



10

The refinements
1) The starting r

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial F(x0,x1, . . . ,xn) of degree d .

written by using a general set of essential variables.
Output: A decomposition of F as F = ∑r

i=1 λiki(x)d with r minimal.

▸ Compute the coefficients of f ∗: cα = aα(d
α
)
−1

, for ∣α∣ ≤ d .

▸ r ∶= 1. r := rk(Maximal numerical submatrix of HΛ).
▸ repeat

1. Compute a set B of monomials of degree at most d connected to
one with ∣B∣ = r .

2. Find parameters h s.t. det(HB
Λ) ≠ 0 and the operators

Mi = HB
xi⋆Λ
(HB

Λ)−1 commute.
3. If there is no solution, restart the loop with r ∶= r + 1.
4. Else compute the n × r eigenvalues ζi,j and the eigenvectors vj s.t.

Mivj = ζi,jvj, i = 1, . . . ,n, j = 1, . . . , r .
until the eigenvalues are simple.

▸ Solve the linear system in (lj)j=1,...,k : Λ = ∑r
i=1 lj1ζj where ζi ∈ Kn

are the eigenvectors found in step 4.
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The refinements
1) The starting r

▸ r ∶= 1. r := rk(Maximal numerical submatrix of HΛ).

1. (I.K.) ↝ (rk(Maximal numerical submatrix of HΛ))≤ rk(F)
so we do not miss good decompositions.

2. Not only a matter of time consuming:

F = x4 + (x + y)4 + (x − y)4 = 3x4 + 12x2y2 + 2y4

⎛
⎜⎜⎜
⎝

3 0 2 0
0 2 0 2
2 0 2 h5

0 2 h5 h6

⎞
⎟⎟⎟
⎠

Start with r = 2 (instead of r = 3). Only one basis: B = {1, y}.

MB
y = ( 0 1

2
3 0

) has two eigenvectors (±
√

3/2,1)

but the system F = λ1(
√

3/2x + y)3 + λ2(−
√

3/2x + y)3 has no solutions.
Ignore the condition imposed by the coefficients of y3, then system has
solution, that is λ1 = λ2 = 2

3 which lead to G = 3x4 + 12x2y2 + 4
3 y4.
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The refinements
1) The starting r

▸ r ∶= 1. r := rk(Maximal numerical submatrix of HΛ).
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The refinements
2) Connection to one vs staircases

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial F(x0,x1, . . . ,xn) of degree d .

written by using a general set of essential variables.
Output: A decomposition of F as F = ∑r

i=1 λiki(x)d with r minimal.

▸ Compute the coefficients of f ∗: cα = aα(d
α
)
−1

, for ∣α∣ ≤ d .
▸ r := rk(largest numerical submatrix of HΛ).
▸ repeat

1. Compute a set B of monomials of degree at most d
connected to one which is a complete staircase with ∣B∣ = r .

2. Find parameters h s.t. det(HB
Λ) ≠ 0 and the operators

Mi = HB
xi⋆Λ
(HB

Λ)−1 commute.
3. If there is no solution, restart the loop with r ∶= r + 1.
4. Else compute the n × r eigenvalues ζi,j and the eigenvectors vj s.t.

Mivj = ζi,jvj, i = 1, . . . ,n, j = 1, . . . , r .
until the eigenvalues are simple.

▸ Solve the linear system in (lj)j=1,...,k : Λ = ∑r
i=1 lj1ζj where ζi ∈ Kn

are the eigenvectors found in step 4.
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The refinements
2) Connection to one vs staircases

Connection to one: B = {1,y ,y2,y2z,y3}.
Complete staircase: B = {1,y ,z,y2,yz}.

Theorem
Let F ∈ R be homogeneous written by using essential variables and
let Λ ∈ R∗ be an extension of f ∗ ∈ R∗

≤d . Then there is a monomial basis
B of AΛ such that B is a complete staircase.

Comparison with 3 variables
Size of B # Complete staircases # Connected to 1
3 1 5
4 3 13
5 5 35
6 9 96
7 13 267

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial



13

The refinements
3) Common eigenvectors

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial F(x0,x1, . . . ,xn) of degree d .

written by using a general set of essential variables.
Output: A decomposition of F as F = ∑r

i=1 λiki(x)d with r minimal.

▸ Compute the coefficients of f ∗: cα = aα(d
α
)
−1

, for ∣α∣ ≤ d .
▸ r := rk(largest numerical submatrix of HΛ).
▸ repeat

1. Compute a set B of monomials of degree at most d which is a
complete staircase with ∣B∣ = r .

2. Find parameters h s.t. det(HB
Λ) ≠ 0 and the operators

Mi = HB
xi⋆Λ
(HB

Λ)−1 commute.
3. If there is no solution, restart the loop with r ∶= r + 1.
4. Else compute the n × r eigenvalues ζi,j and the eigenvectors vj s.t.

Mivj = ζi,jvj, i = 1, . . . ,n, j = 1, . . . , r .

until the eigenvalues are simple. there are r common eigenvectors.

▸ Solve the linear system in (lj)j=1,...,k : Λ = ∑r
i=1 lj1ζj where ζi ∈ Kn are the

eigenvectors found in step 4.
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The refinements
3) Common eigenvectors

Example

F = (x + y)3 + (x + z)3 + (x + y + z)3

↓

MB
y =

⎛
⎜
⎝

0 1 0
0 1 0
−1 1 1

⎞
⎟
⎠
, MB

z =
⎛
⎜
⎝

0 0 1
−1 1 1
0 0 1

⎞
⎟
⎠
.

↓

⟨
⎛
⎜
⎝

1
0
1

⎞
⎟
⎠
⟩ , ⟨

⎛
⎜
⎝

1
1
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
⟩ ⟨

⎛
⎜
⎝

1
1
0

⎞
⎟
⎠
⟩ , ⟨

⎛
⎜
⎝

1
0
1

⎞
⎟
⎠
,
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠
⟩ .
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What we can learn more
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What we can learn more
Tangential decomposition

Let F ∶= (x + y)5 + (x + z)5 + (x + 2y)(x − y)4.
We check r = 4 and B = {1,y ,z,y2}.

MB
y =

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 0 0
1 1 −1 −1

⎞
⎟⎟⎟
⎠
, MB

z =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

↓

⟨
⎛
⎜⎜⎜
⎝

1
1
0
1

⎞
⎟⎟⎟
⎠
⟩ , ⟨

⎛
⎜⎜⎜
⎝

1
0
1
0

⎞
⎟⎟⎟
⎠
⟩ , ⟨

⎛
⎜⎜⎜
⎝

1
−1
0
1

⎞
⎟⎟⎟
⎠
⟩ ,

⟨
⎛
⎜⎜⎜
⎝

1
0
1
1

⎞
⎟⎟⎟
⎠
⟩ , ⟨

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
⟩ .
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What we can learn more
Tangential decomposition

Let F ∶= (x + y)5 + (x + z)5 + (x + 2y)(x − y)4.
We check r = 4 and B = {1,y ,z,y2}.

MB
y =
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⎜⎜⎜
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⎜⎜⎜
⎝
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0 0 0 0

⎞
⎟⎟⎟
⎠
.
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⟨
⎛
⎜⎜⎜
⎝

1
1
0
1

⎞
⎟⎟⎟
⎠
⟩ , ⟨

⎛
⎜⎜⎜
⎝

1
0
1
0

⎞
⎟⎟⎟
⎠
⟩ , ⟨

⎛
⎜⎜⎜
⎝

1
−1
0
1

⎞
⎟⎟⎟
⎠
⟩ ,

⟨
⎛
⎜⎜⎜
⎝

1
0
1
1

⎞
⎟⎟⎟
⎠
⟩ , ⟨

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
⟩ .
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What we can learn more
Tangential decomposition

Let F ∶= (x + y)5 + (x + z)5 + (x + 2y)(x − y)4.
We check r = 4 and B = {1,y ,z,y2}.

MB
y =

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 0 0
1 1 −1 −1

⎞
⎟⎟⎟
⎠
, MB

z =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

↓

⟨
⎛
⎜⎜⎜
⎝

1
1
0
1

⎞
⎟⎟⎟
⎠
⟩ , ⟨

⎛
⎜⎜⎜
⎝

1
0
1
0

⎞
⎟⎟⎟
⎠
⟩ , ⟨

⎛
⎜⎜⎜
⎝

1
−1
0
1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1
2
0
−5

⎞
⎟⎟⎟
⎠
⟩ ,← Generalized!

⟨
⎛
⎜⎜⎜
⎝

1
0
1
1

⎞
⎟⎟⎟
⎠
⟩ , ⟨

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
⟩ .
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What we can learn more
Tangential decomposition

Definition
The tangential rank of F is the minimal r ∈ N such that

F =
k

∑
i=1
λiLd−1

i Ls+i +
s

∑
i=k+1

λiLd
i

with k + s = r and k ≤ s. Such a decomposition for which r is minimal
is a tangential decomposition of F .
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What we can learn more
Tangential decomposition

Proposition
Let l = 1 + l1x1 + ⋅ ⋅ ⋅ + lnxn ∈ R≤1 and g = 1 + g1x1 + ⋅ ⋅ ⋅ + gnxn ∈ R≤1.
For every d ∈ Z≥1 we have

τ(ld−1g) = 1l +
1
d

1l ○ [
n

∑
i=1

(gi − li)
∂

∂xi
] ∈ R∗

≤d .

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial



17

What we can learn more
Tangential decomposition

Proposition
Let l = 1 + l1x1 + ⋅ ⋅ ⋅ + lnxn ∈ R≤1 and g = 1 + g1x1 + ⋅ ⋅ ⋅ + gnxn ∈ R≤1.
For every d ∈ Z≥1 we have

τ(ld−1g) = 1l +
1
d

1l ○ [
n

∑
i=1

(gi − li)
∂

∂xi
] ∈ R∗

≤d .

Theorem
Let Λ ∈ R∗ be an extension of f ∗ ∈ R∗

≤d with F = Ld−1G. Then
▸ The common eigenvector of M t

xj
is 1l .

▸ The generalized rank-2 eigenvector of each M t
xj

is

1l ○ [∑n
i=1(gi − li) ∂

∂xi
].
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Algorithm
Tangential decomposition

Input: A homogeneous polynomial F(x0,x1, . . . ,xn) of degree d .
Output: A minimal decomposition of F as
F = ∑k

i=1 λiLd−1
i Ls+i +∑s

i=k+1 λiLd
i .

▸ Construct the matrix HΛ(h) with the parameters h = {hα}α∈Nn

∣α∣>d
.

▸ Set r ∶= rkH◻

f∗ .
▸ repeat

1. Compute a set B of a complete staircase monomials with ∣B∣ = r .
2. Find parameters h s.t. det(HB

Λ) ≠ 0 and the operators
Mi = HB

xi⋆Λ
(HB

Λ)−1 commute.
3. If there is no solution, restart the loop with r ∶= r + 1.
4. Else compute the r

2 ≤ s ≤ r eigenvectors of a generic ∑i αiM
B
i .

until There are r − s distinct generalized of rank up to 2
eigenvectors vs+1, . . . ,vr common to MB

i ’s such that
▸ they have rank 2 for at least one MB

i ,
▸ when they have rank 2, their chain is always {vs+i , vi}.

▸ Solve the linear system in λ1, . . . , λr :
F = ∑r−s

i=1 vd−1
i (λivi + λs+ivs+i) +∑s

i=r−s+1 λivd
i .
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Another example
Tangential decomposition

F = −2x7 − 4x6y + 92x6z + 15x5y2 − 675x5z2 − 20x4y3 + 2700x4z3 +
15x3y4 − 6075x3z4 − 6x2y5 + 7290x2z5 + xy6 − 3645xz6.

Check r = 6 and B = {1,y ,z,y2,z2,y3}.

Common eigenvectors of (MB
y )t and (MB

z )t : (1,0,0,0,0,0),
(1,−1,0,1,0,−1), (1,0,−3,0,9,0).
generalized eigenspaces:

(MB
y )

t
∶ ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
−1
0
1
0
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
−1
0
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
−3
0
9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
−9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ .

(MB
z )

t
∶ ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
−1
0
1
0
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
−3
0
9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
−9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
−1
0
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ .

F = 2x6(x + y + z) + (x − y)6x − 5(x − 3z)6x .
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Another example
Tangential decomposition

F = −2x7 − 4x6y + 92x6z + 15x5y2 − 675x5z2 − 20x4y3 + 2700x4z3 +
15x3y4 − 6075x3z4 − 6x2y5 + 7290x2z5 + xy6 − 3645xz6.

Check r = 6 and B = {1,y ,z,y2,z2,y3}.

Common eigenvectors of (MB
y )t and (MB

z )t : (1,0,0,0,0,0),
(1,−1,0,1,0,−1), (1,0,−3,0,9,0).
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t
∶ ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
−1
0
1
0
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
−1
0
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
−3
0
9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
−9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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⎜
⎜
⎜
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0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
−1
0
1
0
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
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−3
0
9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
−9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
−1
0
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ .

F = 2x6(x + y + z) + (x − y)6x − 5(x − 3z)6x .
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0
0
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⎟
⎟
⎟
⎟
⎟
⎟

⎠
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨
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⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝
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0
1
0
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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⎜
⎜
⎜

⎝

1
0
0
−1
0
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
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⎜
⎜
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9
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⎟
⎟
⎟
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⎜
⎜
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⎟
⎟
⎟
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⎜
⎜
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0
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
−1
0
1
0
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
−3
0
9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
−9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
−1
0
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ .

F = 2x6(x + y + z) + (x − y)6x − 5(x − 3z)6x .

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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Another example
Tangential decomposition

F = −2x7 − 4x6y + 92x6z + 15x5y2 − 675x5z2 − 20x4y3 + 2700x4z3 +
15x3y4 − 6075x3z4 − 6x2y5 + 7290x2z5 + xy6 − 3645xz6.

Check r = 6 and B = {1,y ,z,y2,z2,y3}.

Common eigenvectors of (MB
y )t and (MB

z )t : (1,0,0,0,0,0),
(1,−1,0,1,0,−1), (1,0,−3,0,9,0).
generalized eigenspaces:

(MB
y )

t
∶ ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
−1
0
1
0
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
−1
0
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
−3
0
9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
−9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ .

(MB
z )

t
∶ ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
−1
0
1
0
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
−3
0
9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
−9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
−1
0
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ .

F = 2x6(x + y + z) + (x − y)6x − 5(x − 3z)6x .
A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
and more
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What we can learn more
Cactus decomposition

F = (x2 + y2 + 6xz − 8z2)(4x − y − 5z)
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What we can learn more
Cactus decomposition

F = (x2 + y2 + 6xz − 8z2)(4x − y − 5z)

Start with r = 3,
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What we can learn more
Cactus decomposition

F = (x2 + y2 + 6xz − 8z2)(4x − y − 5z)

Start with r = 3,
(My B)t and (MzB)t commute and there is a unique common
eigenvector: (4,−1,−5)
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Cactus decomposition

F = (x2 + y2 + 6xz − 8z2)(4x − y − 5z)

Start with r = 3,
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eigenvector: (4,−1,−5)
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What we can learn more
Cactus decomposition

F = (x2 + y2 + 6xz − 8z2)(4x − y − 5z)

Start with r = 3,
(My B)t and (MzB)t commute and there is a unique common
eigenvector: (4,−1,−5) and both their Jordan decompositions have 1
rank-3 block.
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What we can learn more
Cactus decomposition

F = (x2 + y2 + 6xz − 8z2)(4x − y − 5z)

Start with r = 3,
(My B)t and (MzB)t commute and there is a unique common
eigenvector: (4,−1,−5) and both their Jordan decompositions have 1
rank-3 block.
Since r/2 > 1 there is no tg. decomposition for F with r = 3, i.e.

F ≠ L3−1
1 L2 + L3

3

for any linear form L1,L2,L3.
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What we can learn more
Cactus decomposition

F = (x2 + y2 + 6xz − 8z2)(4x − y − 5z)
Start with r = 3,
(My B)t and (MzB)t commute and there is a unique common
eigenvector: (4,−1,−5) and both their Jordan decompositions have 1
rank-3 block.
Since r/2 > 1 there is no tg. decomposition for F with r = 3, i.e.

F ≠ L3−1
1 L2 + L3

3

for any linear form L1,L2,L3.
Claim: Since we did not fill any h, this is the unique decomposition of
F of type

F = L3−2N
with N a quadratic form.
So, to recover N, it is sufficient to solve a linear system:

F = (ax2 + bxy + cxz + dy2 + eyz + fz2)(4x − y − 5z)

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
Cactus decomposition

Non-definition (yet)
A cactus decomposition of F ∈ Rd is a "minimal" way of writing F as

F =
s

∑
i=1

Ld−ki
i Ni

with Ni ∈ Rki .

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
Cactus decomposition

Non-definition (yet)
A cactus decomposition of F ∈ Rd is a "minimal" way of writing F as

F =
s

∑
i=1

Ld−ki
i Ni

with Ni ∈ Rki .

MINIMAL in which sense?

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
Cactus decomposition

Proposition
F = ∑s

i=1 Ld−ki
i Ni iff ∃ ζ1, . . . , ζs ∈ Kn, an extension Λ ∈ R∗ of f ∗ ∈ R∗

≤d and
{pi}i∈{1,...,d} ⊆ R s.t.

Λ =
s

∑
i=1

1ζi ○ pi(δ). (1)

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial



22

What we can learn more
Cactus decomposition

Proposition
F = ∑s

i=1 Ld−ki
i Ni iff ∃ ζ1, . . . , ζs ∈ Kn, an extension Λ ∈ R∗ of f ∗ ∈ R∗

≤d and
{pi}i∈{1,...,d} ⊆ R s.t.

Λ =
s

∑
i=1

1ζi ○ pi(δ). (1)

Definition
Λ as in (1) such that

r = ⊕s
i=1 dimK⟨{1ζi ○ ∂

αpi}∣α∣≤deg pi ⟩K
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=ri=mult 1ζi

.

is minimal, is called a generalized decomposition of f ∗.

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial



22

What we can learn more
Cactus decomposition

Proposition
F = ∑s

i=1 Ld−ki
i Ni iff ∃ ζ1, . . . , ζs ∈ Kn, an extension Λ ∈ R∗ of f ∗ ∈ R∗

≤d and
{pi}i∈{1,...,d} ⊆ R s.t.

Λ =
s

∑
i=1

1ζi ○ pi(δ). (1)

Definition
Λ as in (1) such that

r = ⊕s
i=1 dimK⟨{1ζi ○ ∂

αpi}∣α∣≤deg pi ⟩K
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=ri=mult 1ζi

.

is minimal, is called a generalized decomposition of f ∗.

Definition and Theorem [–,B,M]
The minimal r for which there exists a generalized decomposition of f ∗ ∈ Rd is
the cactus rank of F .

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
Cactus decomposition

Proposition
Let Λ = ∑s

i=1 1ζi ○ pi(δ) be a generalized decomposition of f ∗. Then
there exist ki ∈ K, Ni ∈ Rki such that F can be written as

F =
s

∑
i=1

Ld−ki
i Ni . (∗)

(∗) is called a cactus decomposition of F .
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What we can learn more
Cactus decomposition

Proposition
Let Λ = ∑s

i=1 1ζi ○ pi(δ) be a generalized decomposition of f ∗. Then
there exist ki ∈ K, Ni ∈ Rki such that F can be written as

F =
s

∑
i=1

Ld−ki
i Ni . (∗)

(∗) is called a cactus decomposition of F .

Can we recover a cactus decomposition of a given F ∈ Rd?

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
Cactus decomposition

[BCMT] Theorem
Let F ∈ Rd .

The minim r for which ∃ an extension Λ ∈ R∗ of f ∗ with rkHΛ = r
=

The minimum r which allows to fill HΛ(h) in order to have commuting
multiplication operators.

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
Cactus decomposition

[BCMT] Theorem
Let F ∈ Rd .

The minim r for which ∃ an extension Λ ∈ R∗ of f ∗ with rkHΛ = r
=

The minimum r which allows to fill HΛ(h) in order to have commuting
multiplication operators.

Find commuting operators ⇒ read the 1ζi ’s as the common rank-1
eigenvectors for the M t

xj
.

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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Algorithm
Cactus rank

Input: A homogeneous polynomial F(x0,x1, . . . ,xn) of degree d .
Output: The cactus rank of F and the Li s.t. F = ∑k

i=1 λiLd−ki
i Ni is a

cactus decomposition of F .
▸ Construct the matrix HΛ(h) with the parameters h = {hα}α∈Nn

∣α∣>d
.

▸ Set r ∶= rkH◻

f∗ .
1. Compute a set B of a complete staircase monomials with ∣B∣ = r .
2. Find parameters h s.t. det(HB

Λ) ≠ 0 and the operators
Mi = HB

xi⋆Λ
(HB

Λ)−1 commute.
3. If there is no solution, restart the loop with r ∶= r + 1.

▸ Else Output 1) r is the cactus rank of F .
4 Compute the eigenvectors v1, . . . , vs of a generic ∑i αiM

B
i .

▸ Output 2) Li ∶= vi , i = 1, . . . ,s.

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
Cactus decomposition

Recall

Definition
The minimal r = ⊕s

i=1 dimK⟨{1ζi ○ ∂αpi}∣α∣≤deg pi ⟩K

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=ri=mult 1ζi

for which there exists

a generalized decomposition of F ∈ Rd is the cactus rank of F .

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
Cactus decomposition

Recall

Definition
The minimal r = ⊕s

i=1 dimK⟨{1ζi ○ ∂αpi}∣α∣≤deg pi ⟩K

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=ri=mult 1ζi

for which there exists

a generalized decomposition of F ∈ Rd is the cactus rank of F .

The last thing that we can do is to recover each ri .

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
Cactus decomposition

F ∈ Rd , Λ = ∑s
i=1 1ζi ○ pi(δ) ∈ R∗ a generalized decomposition of f ∗.

Theorem
For every j ∈ {1, . . . ,n} and every α ∈ Nn the element

1ζi ○ (∂
αpi)(δ) ∈ A∗Λ

is either the zero map or a generalized eigenvector common to every
M t

xj
with eigenvalue (ζi)j .

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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What we can learn more
Cactus decomposition

F ∈ Rd , Λ = ∑s
i=1 1ζi ○ pi(δ) ∈ R∗ a generalized decomposition of f ∗.

Theorem
For every j ∈ {1, . . . ,n} and every α ∈ Nn the element

1ζi ○ (∂
αpi)(δ) ∈ A∗Λ

is either the zero map or a generalized eigenvector common to every
M t

xj
with eigenvalue (ζi)j .

Corollary
If V j[µ] is the generalized eigenspace of M t

xj
relative to the eigenvalue

µ, then for every i ∈ {1, . . . ,s} the multiplicity of 1ζi is given by

mult 1ζi = dimK ∩n
j=1V j[(ζi)j].

A. Bernardi, D. Taufer | Algorithm for rank and cactus rank of a polynomial
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Back to a previous example
Tangential decomposition was cactus

F = 2x6(x + y + z) + (x − y)6x − 5(x − 3z)6x .
Common eigenvectors of (MB

y )t and (MB
z )t :

v1 = (1,0,0,0,0,0) ∈ V y [0],V z[0],
v2 = (1,−1,0,1,0,−1) ∈ V y [−1],V z[0],
v3 = (1,0,−3,0,9,0) ∈ V y [0],V z[−3].

generalized eigenspaces:

(MB
y )

t
∶ ⟨⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
−3
0
9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
−9
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

V y [0]

, ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
−1
0
1
0
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
−1
0
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

V y [−1]

.

(MB
z )

t
∶ ⟨⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
−1
0
1
0
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩ , ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1
0
0
−1
0
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⟩⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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Back to a previous example
Tangential decomposition was cactus

F = 2x6(x + y + z) + (x − y)6x − 5(x − 3z)6x .
Common eigenvectors of (MB

y )t and (MB
z )t :

v1 = (1,0,0,0,0,0) ∈ V y [0],V z[0],
v2 = (1,−1,0,1,0,−1) ∈ V y [−1],V z[0],
v3 = (1,0,−3,0,9,0) ∈ V y [0],V z[−3].
generalized eigenspaces:
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Algorithm
Cactus apolar scheme

Input: A homogeneous polynomial F(x0,x1, . . . ,xn) of degree d .
Output: All multiplicity of the 1ζi ’s of the generalized decomposition
of f ∗.

▸ Construct the matrix HΛ(h) with the parameters h = {hα}α∈Nn

∣α∣>d
.

▸ Set r ∶= rkH◻

f∗ .
▸ Compute a set B of a complete staircase monomials with ∣B∣ = r .
▸ Find parameters h s.t. det(HB

Λ) ≠ 0 and the operators
Mi = HB

xi⋆Λ
(HB

Λ)−1 commute.
▸ If there is no solution, restart the loop with r ∶= r + 1. Else r is the

cactus rank of f .
▸ Compute the common eigenvectors v1, . . . ,vs of the MB

j ’s and
V j[(ζ1)j] the generalized eigenspace of M t

xj
relative to the

eigenvalue (ζ1)j

▸ Output mult 1ζi = dimK ∩n
j=1V j[(ζi)j].
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Further work

▸ Get any cactus decomposition explicitly? F = ∑s
i=1 λiLd−ki Ni .

(recovering the ki ’s? recovering the Ni ’s?)

▸ More selective choices of B? May these lead to bounds on r?
▸ How to deal with the h’s?
▸ Serious implementation? Complexity?
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