Algorithms for rank and cactus rank of a polynomial

Alessandra Bernardi | alessandra.bernardi@unitn.it
Daniele Taufer | daniele.taufer@unitn.it

November 14, 2018

Outline

[BCMT] Symmetric Tensor Decomposition, 2010

J. Brachat, P. Comon, B. Mourrain and E. Tsigaridas.

Linear Algebra and its Applications, 433 (11-12), pp. 1851-1872.

The STD algorithm
Proposed refinements
What we can learn more
Tangential decomposition
Cactus decomposition
Further work

The problem

Decomposing symmetric tensors

You have...

$$
F=-4 x y+2 x z+2 y z+z^{2}
$$

You want...

$$
F=(x-y)^{2}-2(x+y)^{2}+(x+y+z)^{2} .
$$

The problem

You have...

$$
\begin{array}{r}
F=-4 x y+2 x z+2 y z+z^{2}, \\
f=F_{x=1}=-4 y+2 z+2 y z+z^{2} .
\end{array}
$$

You want...

$$
\begin{aligned}
F & =(x-y)^{2}-2(x+y)^{2}+(x+y+z)^{2} . \\
f=F_{x=1} & =(1-y)^{2}-2(1+y)^{2}+(1+y+z)^{2} .
\end{aligned}
$$

Ideas

Move and solve the problem in the dual space

$$
R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] .
$$

Apolar polynomial

$$
\begin{gathered}
f=\sum_{|\alpha| \leq d} f_{\alpha} \mathbf{x}^{\alpha} \in R_{\leq d} \\
\downarrow \\
g=\sum_{|\alpha| \leq d} g_{\alpha} \mathbf{x}^{\alpha} \mapsto\langle f, g\rangle=\sum_{|\alpha| \leq d} \frac{f_{\alpha} g_{\alpha}}{\binom{d}{\alpha}}
\end{gathered}
$$

Ideas

Move and solve the problem in the dual space

Apolar polynomial

$$
\begin{aligned}
& f^{*}=\left(\sum_{|\alpha| \leq d} f_{\alpha} \mathbf{x}^{\alpha}\right)^{*}: R_{\leq d} \rightarrow \mathbb{K}, \\
& \quad g=\sum_{|\alpha| \leq d} g_{\alpha} \mathbf{x}^{\alpha} \mapsto\langle f, g\rangle=\sum_{|\alpha| \leq d} \frac{f_{\alpha} g_{\alpha}}{\binom{d}{\alpha}}
\end{aligned}
$$

Dual map

$$
\begin{gathered}
\tau: R_{\leq d} \leftrightarrow R_{\leq d}^{*}, \\
f=\sum_{i=1}^{r} \lambda_{i}\left(1+I_{1 i} x_{1}+\cdots+I_{n i} x_{n}\right)^{d} \mapsto f^{*}=\sum_{i=1}^{r} \lambda_{i} \mathbb{1}_{\left(1_{1 i}, \ldots, I_{n i}\right)} .
\end{gathered}
$$

Ideas

Move and solve the problem in the dual space

Dual map

$$
\begin{aligned}
& \tau: R_{\leq d} \hookrightarrow R_{\leq d}^{*} \\
& f=\sum_{i=1}^{r} \lambda_{i}\left(1+I_{1 i} x_{1}+\cdots+I_{n i} x_{n}\right)^{d} \mapsto f^{*}=\sum_{i=1}^{r} \lambda_{i} \mathbb{1}_{\left(I_{1 i}, \ldots, I_{n i}\right)} .
\end{aligned}
$$

Aim

Find $\Lambda \in R^{*}$ that restricts to f^{*} on $R_{s d}$:

$$
\Lambda_{R_{\leq d}}=f^{*}
$$

Ideas

Use Henkel operators

Let $\Lambda \in R^{*}$. Define

- the Henkel operator of \wedge as

$$
\begin{aligned}
& H_{\wedge}: R \\
& \rightarrow R^{*}, \\
& r \mapsto r \star \Lambda=(t \mapsto \Lambda(r t)),
\end{aligned}
$$

- $I_{\Lambda}=\operatorname{ker} H_{\Lambda}$,
- $\mathcal{A}_{\Lambda}=R / I_{\Lambda}$,
- the multiplication by r operators on \mathcal{A}_{\wedge} and \mathcal{A}_{\wedge}^{*} as

$$
\begin{aligned}
M_{r}: \mathcal{A}_{\Lambda} & \rightarrow \mathcal{A}_{\Lambda}, & M_{r}^{t}: \mathcal{A}_{\Lambda}^{*} & \rightarrow \mathcal{A}_{\Lambda}^{*}, \\
t & \mapsto r \cdot t, & \phi & \mapsto \star \phi .
\end{aligned}
$$

Ideas

[BCMT] Theorem

Let $\Lambda \in R^{*}$ and $r \in \mathbb{N}_{>0}$. The following are equivalent:

- There exist non-zero constants $\left\{\lambda_{i}\right\}_{i \in\{1, \ldots, r\}}$ and distinct points $\left\{\zeta_{i}\right\}_{i \in\{1, \ldots, r\}} \subseteq \mathbb{K}^{n}$ such that

$$
\Lambda=\sum_{i=1}^{r} \lambda_{i} \mathbb{1}_{\zeta_{i}} .
$$

- $r k H_{\Lambda}=r$ and I_{\wedge} is a radical ideal.

Ideas

Theorem

Let $\Lambda \in R^{*}$ such that I_{Λ} is 0 -dimensional and \mathcal{A}_{Λ} is an r-dimensional \mathbb{K}-vector space. Then the following are equivalent:

- Up to \mathbb{K}-multiplication, there are r distinct common eigenvectors of $\left\{M_{x_{i}}^{t}\right\}_{i \in\{1, \ldots, n\}}$.
- I_{Λ} is radical.

Ideas

Theorem

Let $\Lambda \in R^{*}$ such that I_{Λ} is 0 -dimensional and \mathcal{A}_{Λ} is an r-dimensional \mathbb{K}-vector space.

- $\mathcal{V}\left(l_{\Lambda}\right)=\left\{\zeta_{1}, \ldots, \zeta_{s}\right\}$ is radical if and only if $s=r$ since $\mathcal{A}_{\Lambda}=R / I_{\Lambda}$ and $\operatorname{dim}\left(\mathcal{A}_{\wedge}\right)=r$.
Then the following are equivalent:
- Up to \mathbb{K}-multiplication, there are r distinct common eigenvectors of $\left\{M_{x_{i}}^{t}\right\}_{i \in\{1, \ldots, n\}}$.
- Eigenvalues of $M_{x_{i}}$ and $M_{x_{i}}^{t}$ are $\left\{x_{i}\left(\zeta_{1}\right), \ldots, x_{i}\left(\zeta_{s}\right)\right\}$. [Stickelberger]
- v is an eigenvector for every $\left\{M_{x_{i}}^{t}\right\}_{\left.{ }_{i\{\{1, \ldots, n\}}\right\}}$ if and only if there exist $\zeta_{1}, \ldots, \zeta_{s} \in \mathbb{K}^{n}$ and $k \neq 0$ such that $v=k \mathbb{1}_{\zeta_{j}}$.
- I_{Λ} is radical.

Ideas

Fill the Henkel matrix

Let $f=-4 y+2 z+2 y z+z^{2}$.
We know some entries of H_{\wedge} :

$$
H_{\wedge}=\left(\begin{array}{c|cccccc}
& 1 & y & z & y^{2} & y z & z^{2} \\
\hline 1 & f^{*}(1) & f^{*}(y) & f^{*}(z) & f^{*}\left(y^{2}\right) & f^{*}(y z) & f^{*}\left(z^{2}\right) \\
y & f^{*}(y) & f^{*}\left(y^{2}\right) & f^{*}(y z) & & & \\
z & f^{*}(z) & f^{*}(y z) & f^{*}\left(z^{2}\right) & & & \\
y^{2} & f^{*}\left(y^{2}\right) & & & & & \\
y z & f^{*}(y z) & & & & ? & \\
z^{2} & f^{*}\left(z^{2}\right) & & & & &
\end{array}\right) .
$$

Ideas

Fill the Henkel matrix

Let $f=-4 y+2 z+2 y z+z^{2}$.

$$
H_{\Lambda}(\mathbf{h})=\left(\begin{array}{c|cccccc}
& 1 & y & z & y^{2} & y z & z^{2} \\
\hline 1 & 0 & -2 & 1 & 0 & 1 & 1 \\
y & -2 & 0 & 1 & h_{(3,0)} & h_{(2,1)} & h_{(1,2)} \\
z & 1 & 1 & 1 & h_{(2,1)} & h_{(1,2)} & h_{(0,3)} \\
y^{2} & 0 & h_{(3,0)} & h_{(2,1)} & h_{(4,0)} & h_{(3,1)} & h_{(2,2)} \\
y z & 1 & h_{(2,1)} & h_{(1,2)} & h_{(3,1)} & h_{(2,2)} & h_{(1,3)} \\
z^{2} & 1 & h_{(1,2)} & h_{(0,3)} & h_{(2,2)} & h_{(1,3)} & h_{(0,4)}
\end{array}\right) .
$$

We want values for \mathbf{h} such that $r k H_{\Lambda}=r$ and I_{Λ} is radical.

Ideas

Fill the Henkel matrix

Let $f=-4 y+2 z+2 y z+z^{2}$.

$$
H_{\wedge}(\mathbf{h})=\left(\begin{array}{c|cccccc}
& 1 & y & z & y^{2} & y z & z^{2} \\
\hline 1 & 0 & -2 & 1 & 0 & 1 & 1 \\
y & -2 & 0 & 1 & h_{(3,0)} & h_{(2,1)} & h_{(1,2)} \\
z & 1 & 1 & 1 & h_{(2,1)} & h_{(1,2)} & h_{(0,3)} \\
y^{2} & 0 & h_{(3,0)} & h_{(2,1)} & h_{(4,0)} & h_{(3,1)} & h_{(2,2)} \\
y z & 1 & h_{(2,1)} & h_{(1,2)} & h_{(3,1)} & h_{(2,2)} & h_{(1,3)} \\
z^{2} & 1 & h_{(1,2)} & h_{(0,3)} & h_{(2,2)} & h_{(1,3)} & h_{(0,4)}
\end{array}\right) .
$$

We guess that $B=\{1, y, z\}$ is a basis for \mathcal{A}_{\wedge}, so that $r=3$. Define

$$
\mathbb{H}_{\Lambda}^{B}=\left(\begin{array}{ccc}
0 & -2 & 1 \\
-2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Ideas

Fill the Henkel matrix

Let $f=-4 y+2 z+2 y z+z^{2}$.

$$
H_{\wedge}(\mathbf{h})=\left(\begin{array}{c|cccccc}
& 1 & y & z & y^{2} & y z & z^{2} \\
\hline 1 & 0 & -2 & 1 & 0 & 1 & 1 \\
y & -2 & 0 & 1 & h_{(3,0)} & h_{(2,1)} & h_{(1,2)} \\
z & 1 & 1 & 1 & h_{(2,1)} & h_{(1,2)} & h_{(0,3)} \\
y^{2} & 0 & h_{(3,0)} & h_{(2,1)} & h_{(4,0)} & h_{(3,1)} & h_{(2,2)} \\
y z & 1 & h_{(2,1)} & h_{(1,2)} & h_{(3,1)} & h_{(2,2)} & h_{(1,3)} \\
z^{2} & 1 & h_{(1,2)} & h_{(0,3)} & h_{(2,2)} & h_{(1,3)} & h_{(0,4)}
\end{array}\right) .
$$

We guess that $B=\{1, y, z\}$ is a basis for \mathcal{A}_{\wedge}, so that $r=3$. Define

$$
\mathbb{H}_{\Lambda}^{B}=\left(\begin{array}{ccc}
0 & -2 & 1 \\
-2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right), \quad \mathbb{H}_{y \star \Lambda}^{B}=\left(\begin{array}{ccc}
-2 & 0 & 1 \\
0 & h_{(3,0)} & h_{(2,1)} \\
1 & h_{(2,1)} & h_{(1,2)}
\end{array}\right)
$$

Ideas

Let $f=-4 y+2 z+2 y z+z^{2}$.
We guess that $B=\{1, y, z\}$ is a basis for \mathcal{A}_{\wedge}, so that $r=3$. Define

Ideas

Fill the Henkel matrix

Let $f=-4 y+2 z+2 y z+z^{2}$.
We guess that $B=\{1, y, z\}$ is a basis for \mathcal{A}_{Λ}, so that $r=3$. Define

We want multiplication operators to commute!

$$
\begin{gathered}
\mathbb{M}_{y}^{B} \mathbb{M}_{z}^{B}-\mathbb{M}_{z}^{B} \mathbb{M}_{y}^{B}=0 . \\
\rightarrow h_{(3,0)}=-2, h_{(2,1)}=1, h_{(2,1)}=1, h_{(2,1)}=4 .
\end{gathered}
$$

Ideas

Fill the Henkel matrix

Let $f=-4 y+2 z+2 y z+z^{2}$.

$$
\begin{aligned}
& \left(\mathbb{M}_{y}^{B}\right)^{t}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \rightarrow \text { Eigenspaces: }\left\langle\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle . \\
& \left(\mathbb{M}_{z}^{B}\right)^{t}=\left(\begin{array}{lll}
0 & 0 & \frac{3}{4} \\
0 & 0 & \frac{3}{4} \\
1 & 1 & \frac{5}{2}
\end{array}\right) \rightarrow \text { Eigenspaces: }\left\langle\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{c}
1 \\
1 \\
-\frac{1}{2}
\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right)\right\rangle .
\end{aligned}
$$

Ideas

Fill the Henkel matrix

Let $f=-4 y+2 z+2 y z+z^{2}$.
Common eigenspaces: $\left\langle\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{c}1 \\ 1 \\ -\frac{1}{2}\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)\right\rangle$.
Solve in $\lambda_{i}: f=\lambda_{1}(1-1 y+0 z)^{2}+\lambda_{2}\left(1+1 y-\frac{1}{2} z\right)^{2}+\lambda_{3}(1+1 y+3 z)^{2}$.

$$
\begin{array}{lll}
\lambda_{1}=1 & \lambda_{2}=-\frac{8}{7} & \lambda_{3}=\frac{1}{7}
\end{array}
$$

Conclusion: $f=(1-y)^{2}-\frac{8}{7}\left(1+y-\frac{1}{2} z\right)^{2}+\frac{1}{7}(1+y+3 z)^{2}$.

STD algorithm

As proposed in [BCMT]

Algorithm: Symmetric tensor decomposition Input: A homogeneous polynomial $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree d.
Output: A decomposition of F as $F=\sum_{i=1}^{r} \lambda_{i} L_{i}^{d}$ with r minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$.
- $r:=1$.
- repeat

1. Compute a set B of monomials of degree at most d connected to one with $|B|=r$.
2. Find parameters \mathbf{h} s.t. $\operatorname{det}\left(\mathbb{H}_{\wedge}^{B}\right) \neq 0$ and the operators $M_{i}=H_{x_{i} \star \Lambda}^{B}\left(\mathbb{H}_{\Lambda}^{B}\right)^{-1}$ commute.
3. If there is no solution, restart the loop with $r:=r+1$.
4. Else compute the $n \times r$ eigenvalues $\zeta_{i, j}$ and the eigenvectors \mathbf{v}_{j} s.t. $M_{i} \mathbf{v}_{\mathbf{j}}=\zeta_{i, j} \mathbf{v}_{\mathbf{j}}, i=1, \ldots, n, j=1, \ldots, r$.
until the eigenvalues are simple.

- Solve the linear system in $\left(l_{j}\right)_{j=1, \ldots, k}: \Lambda=\sum_{i=1}^{r} l_{j} \mathbb{1}_{\zeta_{j}}$ where $\zeta_{i} \in \mathbb{K}^{n}$ are the eigenvectors found in step 4.

The refinements

0) Essential variables

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree d written by using a general set of essential variables.
Output: A decomposition of f as $F=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{\mathbf{i}}(\mathbf{x})^{d}$ with r minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$.
- $r:=1$.
- repeat

1. Compute a set B of monomials of degree at most d connected to one with $|B|=r$.
2. Find parameters \mathbf{h} s.t. $\operatorname{det}\left(\mathbb{H}_{\Lambda}^{B}\right) \neq 0$ and the operators $M_{i}=H_{x_{i} \star \Lambda}^{B}\left(\mathbb{H}_{\Lambda}^{B}\right)^{-1}$ commute.
3. If there is no solution, restart the loop with $r:=r+1$.
4. Else compute the $n \times r$ eigenvalues $\zeta_{i, j}$ and the eigenvectors \mathbf{v}_{j} s.t. $M_{i} \mathbf{v}_{\mathbf{j}}=\zeta_{i, j} \mathbf{v}_{\mathbf{j}}, i=1, \ldots, n, j=1, \ldots, r$.
until the eigenvalues are simple.

- Solve the linear system in $\left(l_{j}\right)_{j=1, \ldots, k}: \Lambda=\sum_{i=1}^{r} l_{j} \mathbb{1}_{\zeta_{j}}$ where $\zeta_{i} \in \mathbb{K}^{n}$ are the eigenvectors found in step 4.

The refinements

0) Essential variables

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree d written by using a general set of essential variables.

- General: De-homog. by x_{0} implies decomp. of type

$$
f=\sum_{i=1}^{r} \lambda_{i}\left(1+\alpha_{i} l_{i}\left(x_{1}, \ldots, x_{n}\right)\right)^{d}
$$

- Essential variables:

$$
x^{3}+(x+y+z)^{3}
$$

2 essential variables and rank $2 \Rightarrow$ Any basis made of 2 elements \Rightarrow we can recover at most 2 coefficients of the linear forms.

The refinements

1) The starting r

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree d. written by using a general set of essential variables.
Output: A decomposition of F as $F=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{\mathbf{i}}(\mathbf{x})^{d}$ with r minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$.
- $r:=1$. $r:=\# \operatorname{Ess} \operatorname{Var}(f)$?
- repeat

1. Compute a set B of monomials of degree at most d connected to one with $|B|=r$.
2. Find parameters \mathbf{h} s.t. $\operatorname{det}\left(\mapsto_{\Lambda}^{B}\right) \neq 0$ and the operators $M_{i}=\mathbb{H}_{x_{i} \wedge}^{B}\left(H_{\Lambda}^{B}\right)^{-1}$ commute.
3. If there is no solution, restart the loop with $r:=r+1$.
4. Else compute the $n \times r$ eigenvalues $\zeta_{i, j}$ and the eigenvectors \mathbf{v}_{j} s.t. $M_{i} \mathbf{v}_{\mathbf{j}}=\zeta_{i, j} \mathbf{v}_{\mathbf{j}}, i=1, \ldots, n, j=1, \ldots, r$.
until the eigenvalues are simple.

- Solve the linear system in $\left(l_{j}\right)_{j=1, \ldots, k}: \Lambda=\sum_{i=1}^{r} l_{j} \mathbb{1}_{\zeta_{j}}$ where $\zeta_{i} \in \mathbb{K}^{n}$ are the eigenvectors found in step 4.

The refinements

1) The starting r

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree d. written by using a general set of essential variables.
Output: A decomposition of F as $F=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{\mathbf{i}}(\mathbf{x})^{d}$ with r minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$.
- $r:=1$. $r:=r k\left(\right.$ Maximal numerical submatrix of $\left.H_{\Lambda}\right)$.
- repeat

1. Compute a set B of monomials of degree at most d connected to one with $|B|=r$.
2. Find parameters \mathbf{h} s.t. $\operatorname{det}\left(\mathbb{H}_{\wedge}^{B}\right) \neq 0$ and the operators $M_{i}=H_{x_{i} \star \Lambda}^{B}\left(\mathbb{H}_{\Lambda}^{B}\right)^{-1}$ commute.
3. If there is no solution, restart the loop with $r:=r+1$.
4. Else compute the $n \times r$ eigenvalues $\zeta_{i, j}$ and the eigenvectors $\mathbf{v}_{\mathbf{j}}$ s.t.

$$
M_{i} \mathbf{v}_{\mathbf{j}}=\zeta_{i, j} \mathbf{v}_{\mathbf{j}}, i=1, \ldots, n, j=1, \ldots, r
$$

until the eigenvalues are simple.

- Solve the linear system in $\left(l_{j}\right)_{j=1, \ldots, k}: \Lambda=\sum_{i=1}^{r} l_{j} \mathbb{1}_{\zeta_{j}}$ where $\zeta_{i} \in \mathbb{K}^{n}$ are the eigenvectors found in step 4.

The refinements

1) The starting r

- $r:=1$. $r:=r k\left(\right.$ Maximal numerical submatrix of $\left.H_{\Lambda}\right)$.

1. (I.K.) $\leadsto\left(\mathrm{rk}\left(\right.\right.$ Maximal numerical submatrix of $\left.\left.H_{\wedge}\right)\right) \leq r k(F)$ so we do not miss good decompositions.

The refinements

1) The starting r

- $r:=1$. $r:=r k\left(\right.$ Maximal numerical submatrix of $\left.H_{\Lambda}\right)$.

1. (I.K.) $\leadsto\left(\right.$ rk(Maximal numerical submatrix of $\left.\left.H_{\wedge}\right)\right) \leq r k(F)$ so we do not miss good decompositions.
2. Not only a matter of time consuming:

$$
F=x^{4}+(x+y)^{4}+(x-y)^{4}=3 x^{4}+12 x^{2} y^{2}+2 y^{4}
$$

$$
\left(\begin{array}{cccc}
3 & 0 & 2 & 0 \\
0 & 2 & 0 & 2 \\
2 & 0 & 2 & h_{5} \\
0 & 2 & h_{5} & h_{6}
\end{array}\right)
$$

The refinements

1) The starting r

- $r:=1$. $r:=r k\left(\right.$ Maximal numerical submatrix of $\left.H_{\Lambda}\right)$.

1. (I.K.) $\leadsto\left(r k\left(\right.\right.$ Maximal numerical submatrix of $\left.\left.H_{\wedge}\right)\right) \leq r k(F)$ so we do not miss good decompositions.
2. Not only a matter of time consuming:

$$
\begin{gathered}
F=x^{4}+(x+y)^{4}+(x-y)^{4}=3 x^{4}+12 x^{2} y^{2}+2 y^{4} \\
\left(\begin{array}{cccc}
3 & 0 & 2 & 0 \\
0 & 2 & 0 & 2 \\
2 & 0 & 2 & h_{5} \\
0 & 2 & h_{5} & h_{6}
\end{array}\right)
\end{gathered}
$$

Start with $r=2$ (instead of $r=3$). Only one basis: $B=\{1, y\}$.

$$
M_{y}^{B}=\left(\begin{array}{ll}
0 & 1 \\
\frac{2}{3} & 0
\end{array}\right) \text { has two eigenvectors }(\pm \sqrt{3 / 2}, 1)
$$

but the system $F=\lambda_{1}(\sqrt{3 / 2} x+y)^{3}+\lambda_{2}(-\sqrt{3 / 2} x+y)^{3}$ has no solutions.

The refinements

1) The starting r

- $r:=1$. $r:=r k\left(\right.$ Maximal numerical submatrix of $\left.H_{\Lambda}\right)$.

1. (I.K.) $\leadsto\left(r k\left(\right.\right.$ Maximal numerical submatrix of $\left.\left.H_{\wedge}\right)\right) \leq r k(F)$ so we do not miss good decompositions.
2. Not only a matter of time consuming:

$$
\begin{gathered}
F=x^{4}+(x+y)^{4}+(x-y)^{4}=3 x^{4}+12 x^{2} y^{2}+2 y^{4} \\
\left(\begin{array}{cccc}
3 & 0 & 2 & 0 \\
0 & 2 & 0 & 2 \\
2 & 0 & 2 & h_{5} \\
0 & 2 & h_{5} & h_{6}
\end{array}\right)
\end{gathered}
$$

Start with $r=2$ (instead of $r=3$). Only one basis: $B=\{1, y\}$.

$$
M_{y}^{B}=\left(\begin{array}{ll}
0 & 1 \\
\frac{2}{3} & 0
\end{array}\right) \text { has two eigenvectors }(\pm \sqrt{3 / 2}, 1)
$$

but the system $F=\lambda_{1}(\sqrt{3 / 2} x+y)^{3}+\lambda_{2}(-\sqrt{3 / 2} x+y)^{3}$ has no solutions. Ignore the condition imposed by the coefficients of y^{3}, then system has solution, that is $\lambda_{1}=\lambda_{2}=\frac{2}{3}$ which lead to $G=3 x^{4}+12 x^{2} y^{2}+\frac{4}{3} y^{4}$.

The refinements

2) Connection to one vs staircases

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree d. written by using a general set of essential variables.
Output: A decomposition of F as $F=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{\mathbf{i}}(\mathbf{x})^{d}$ with r minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$.
- $r:=r k\left(\right.$ largest numerical submatrix of $\left.H_{\Lambda}\right)$.
- repeat

1. Compute a set B of monomials of degree at most d connected to one which is a complete staircase with $|B|=r$.
2. Find parameters \mathbf{h} s.t. $\operatorname{det}\left(\mapsto_{\wedge}^{B}\right) \neq 0$ and the operators $M_{i}=\mathbb{H}_{x_{i} \star \wedge}^{B}\left(H_{\Lambda}^{B}\right)^{-1}$ commute.
3. If there is no solution, restart the loop with $r:=r+1$.
4. Else compute the $n \times r$ eigenvalues $\zeta_{i, j}$ and the eigenvectors \mathbf{v}_{j} s.t. $M_{i} \mathbf{v}_{\mathbf{j}}=\zeta_{i, j} \mathbf{v}_{\mathbf{j}}, i=1, \ldots, n, j=1, \ldots, r$.
until the eigenvalues are simple.

- Solve the linear system in $\left(l_{j}\right)_{j=1, \ldots, k}: \Lambda=\sum_{i=1}^{r} l_{j} \mathbb{1}_{\zeta_{j}}$ where $\zeta_{i} \in \mathbb{K}^{n}$ are the eigenvectors found in step 4.

The refinements

2) Connection to one vs staircases

Connection to one: $B=\left\{1, y, y^{2}, y^{2} z, y^{3}\right\}$.
Complete staircase: $B=\left\{1, y, z, y^{2}, y z\right\}$.

Theorem

Let $F \in R$ be homogeneous written by using essential variables and let $\Lambda \in R^{*}$ be an extension of $f^{*} \in R_{\leq d}^{*}$. Then there is a monomial basis B of \mathcal{A}_{\wedge} such that B is a complete staircase.

Comparison with 3 variables

Size of B	\# Complete staircases	\# Connected to 1
3	1	5
4	3	13
5	5	35
6	9	96
7	13	267

The refinements
 3) Common eigenvectors

Algorithm: Symmetric tensor decomposition
Input: A homogeneous polynomial $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree d. written by using a general set of essential variables.
Output: A decomposition of F as $F=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{\mathbf{i}}(\mathbf{x})^{d}$ with r minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$.
- $r:=r k\left(\right.$ largest numerical submatrix of $\left.H_{\Lambda}\right)$.
- repeat

1. Compute a set B of monomials of degree at most d which is a complete staircase with $|B|=r$.
2. Find parameters \mathbf{h} s.t. $\operatorname{det}\left(H_{\Lambda}^{B}\right) \neq 0$ and the operators $M_{i}=\mathbb{H}_{x_{i} \star \wedge}^{B}\left(H_{\Lambda}^{B}\right)^{-1}$ commute.
3. If there is no solution, restart the loop with $r:=r+1$.
4. Else compute the $n \times r$ eigenvalues $\zeta_{i, j}$ and the eigenvectors \mathbf{v}_{j} s.t.

$$
M_{i} \mathbf{v}_{\mathbf{j}}=\zeta_{i, j} \mathbf{v}_{\mathbf{j}}, i=1, \ldots, n, j=1, \ldots, r
$$

until the eigenvalues are simple. there are r common eigenvectors.

- Solve the linear system in $\left(l_{j}\right)_{j=1, \ldots, k}: \Lambda=\sum_{i=1}^{r} l_{j} \mathbb{1}_{\zeta_{j}}$ where $\zeta_{i} \in \mathbb{K}^{n}$ are the eigenvectors found in step 4.

The refinements
 3) Common eigenvectors

Example

$$
\begin{gathered}
F=(x+y)^{3}+(x+z)^{3}+(x+y+z)^{3} \\
\downarrow \\
M_{y}^{B}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right), M_{z}^{B}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) . \\
\downarrow \\
\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle\left\langle\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\rangle .
\end{gathered}
$$

What we can learn more

What we can learn more

Let $F:=(x+y)^{5}+(x+z)^{5}+(x+2 y)(x-y)^{4}$.
We check $r=4$ and $B=\left\{1, y, z, y^{2}\right\}$.

$$
\begin{aligned}
M_{y}^{B}= & \left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & -1 & -1
\end{array}\right), M_{z}^{B}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) . \\
\downarrow & \left(\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)\right),\left(\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)\right),\left(\left(\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right)\right), \\
& \left(\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right)\right),\left(\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right) .
\end{aligned}
$$

What we can learn more

Let $F:=(x+y)^{5}+(x+z)^{5}+(x+2 y)(x-y)^{4}$.
We check $r=4$ and $B=\left\{1, y, z, y^{2}\right\}$.

$$
\begin{aligned}
& \mathbb{M}_{y}^{B}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & -1 & -1
\end{array}\right), \mathbb{M}_{z}^{B}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) . \\
& \downarrow \\
&\left(\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)\right),\left(\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)\right),\left\langle\left(\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right)\right), \\
&\left(\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right)\right),\left\langle\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right) .
\end{aligned}
$$

What we can learn more

Let $F:=(x+y)^{5}+(x+z)^{5}+(x+2 y)(x-y)^{4}$.
We check $r=4$ and $B=\left\{1, y, z, y^{2}\right\}$.

$$
\begin{aligned}
& M_{y}^{B}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & -1 & -1
\end{array}\right), M_{z}^{B}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) . \\
& \downarrow \\
& \left(\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)\right),\left\langle\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)\right),\left\langle\left(\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
2 \\
0 \\
-5
\end{array}\right)\right), \leftarrow \text { Generalized! } \\
& \left(\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right)\right),\left\langle\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right) .
\end{aligned}
$$

What we can learn more

Definition

The tangential rank of F is the minimal $r \in \mathbb{N}$ such that

$$
F=\sum_{i=1}^{k} \lambda_{i} L_{i}^{d-1} L_{s+i}+\sum_{i=k+1}^{s} \lambda_{i} L_{i}^{d}
$$

with $k+s=r$ and $k \leq s$. Such a decomposition for which r is minimal is a tangential decomposition of F.

What we can learn more

Proposition

Let $I=1+l_{1} x_{1}+\cdots+I_{n} x_{n} \in R_{\leq 1}$ and $g=1+g_{1} x_{1}+\cdots+g_{n} x_{n} \in R_{\leq 1}$.
For every $d \in \mathbb{Z}_{\geq 1}$ we have

$$
\tau\left(l^{d-1} g\right)=\mathbb{1}_{l}+\frac{1}{d} \mathbb{1}_{I} \circ\left[\sum_{i=1}^{n}\left(g_{i}-l_{i}\right) \frac{\partial}{\partial x_{i}}\right] \in R_{\leq d}^{*} .
$$

What we can learn more

Proposition

Let $I=1+I_{1} x_{1}+\cdots+I_{n} x_{n} \in R_{\leq 1}$ and $g=1+g_{1} x_{1}+\cdots+g_{n} x_{n} \in R_{\leq 1}$.
For every $d \in \mathbb{Z}_{\geq 1}$ we have

$$
\tau\left(I^{d-1} g\right)=\mathbb{1}_{l}+\frac{1}{d} \mathbb{1}_{l} \circ\left[\sum_{i=1}^{n}\left(g_{i}-l_{i}\right) \frac{\partial}{\partial x_{i}}\right] \in R_{\leq d}^{*}
$$

Theorem

Let $\Lambda \in R^{*}$ be an extension of $f^{*} \in R_{s d}^{*}$ with $F=L^{d-1} G$. Then

- The common eigenvector of $M_{x_{j}}^{t}$ is $\mathbb{1}_{l}$.
- The generalized rank-2 eigenvector of each $M_{x_{j}}^{t}$ is
$\mathbb{1}_{I} \circ\left[\sum_{i=1}^{n}\left(g_{i}-l_{i}\right) \frac{\partial}{\partial x_{i}}\right]$.

Algorithm

Tangential decomposition

Input: A homogeneous polynomial $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree d.
Output: A minimal decomposition of F as
$F=\sum_{i=1}^{k} \lambda_{i} L_{i}^{d-1} L_{s+i}+\sum_{i=k+1}^{S} \lambda_{i} L_{i}^{d}$.

- Construct the matrix $H_{\Lambda}(\mathbf{h})$ with the parameters $\mathbf{h}=\left\{h_{\alpha}\right\}_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|>d}}$.
- Set $r:=$ rkH $H_{f^{*}}$.
- repeat

1. Compute a set B of a complete staircase monomials with $|B|=r$.
2. Find parameters \mathbf{h} s.t. $\operatorname{det}\left(\mapsto_{\Lambda}^{B}\right) \neq 0$ and the operators $M_{i}=\mathbb{H}_{x_{i} \star}^{B}\left(H_{\Lambda}^{B}\right)^{-1}$ commute.
3. If there is no solution, restart the loop with $r:=r+1$.
4. Else compute the $\frac{r}{2} \leq s \leq r$ eigenvectors of a generic $\sum_{i} \alpha_{i} M_{i}^{B}$. until There are $r-s$ distinct generalized of rank up to 2 eigenvectors v_{s+1}, \ldots, v_{r} common to \mathbb{M}_{i}^{B} 's such that

- they have rank 2 for at least one M_{i}^{B},
- when they have rank 2 , their chain is always $\left\{v_{s+i}, v_{i}\right\}$.
- Solve the linear system in $\lambda_{1}, \ldots, \lambda_{r}$:

$$
F=\sum_{i=1}^{r-s} v_{i}^{d-1}\left(\lambda_{i} v_{i}+\lambda_{s+i} v_{s+i}\right)+\sum_{i=r-s+1}^{S} \lambda_{i} v_{i}^{d} .
$$

Another example

Tangential decomposition

$F=-2 x^{7}-4 x^{6} y+92 x^{6} z+15 x^{5} y^{2}-675 x^{5} z^{2}-20 x^{4} y^{3}+2700 x^{4} z^{3}$ $15 x^{3} y^{4}-6075 x^{3} z^{4}-6 x^{2} y^{5}+7290 x^{2} z^{5}+x y^{6}-3645 x z^{6}$.

Another example

$F=-2 x^{7}-4 x^{6} y+92 x^{6} z+15 x^{5} y^{2}-675 x^{5} z^{2}-20 x^{4} y^{3}+2700 x^{4} z^{3}$ $15 x^{3} y^{4}-6075 x^{3} z^{4}-6 x^{2} y^{5}+7290 x^{2} z^{5}+x y^{6}-3645 x z^{6}$.
Check $r=6$ and $B=\left\{1, y, z, y^{2}, z^{2}, y^{3}\right\}$.

Another example

$F=-2 x^{7}-4 x^{6} y+92 x^{6} z+15 x^{5} y^{2}-675 x^{5} z^{2}-20 x^{4} y^{3}+2700 x^{4} z^{3}$ $15 x^{3} y^{4}-6075 x^{3} z^{4}-6 x^{2} y^{5}+7290 x^{2} z^{5}+x y^{6}-3645 x z^{6}$.
Check $r=6$ and $B=\left\{1, y, z, y^{2}, z^{2}, y^{3}\right\}$.
Common eigenvectors of $\left(\mathbb{M}_{y}^{B}\right)^{t}$ and $\left(\mathbb{M}_{z}^{B}\right)^{t}:(1,0,0,0,0,0)$, $(1,-1,0,1,0,-1),(1,0,-3,0,9,0)$.

Another example

Tangential decomposition
$F=-2 x^{7}-4 x^{6} y+92 x^{6} z+15 x^{5} y^{2}-675 x^{5} z^{2}-20 x^{4} y^{3}+2700 x^{4} z^{3}$ $15 x^{3} y^{4}-6075 x^{3} z^{4}-6 x^{2} y^{5}+7290 x^{2} z^{5}+x y^{6}-3645 x z^{6}$.

Check $r=6$ and $B=\left\{1, y, z, y^{2}, z^{2}, y^{3}\right\}$.
Common eigenvectors of $\left(\mathbb{M}_{y}^{B}\right)^{t}$ and $\left(\mathbb{M}_{z}^{B}\right)^{t}:(1,0,0,0,0,0)$, $(1,-1,0,1,0,-1),(1,0,-3,0,9,0)$.
generalized eigenspaces:

What we can learn more and more

What we can learn more

Cactus decomposition

$$
F=\left(x^{2}+y^{2}+6 x z-8 z^{2}\right)(4 x-y-5 z)
$$

What we can learn more

$$
F=\left(x^{2}+y^{2}+6 x z-8 z^{2}\right)(4 x-y-5 z)
$$

Start with $r=3$,

What we can learn more

$$
F=\left(x^{2}+y^{2}+6 x z-8 z^{2}\right)(4 x-y-5 z)
$$

Start with $r=3$, $\left(\mathbb{M}_{y} B\right)^{t}$ and $\left(\mathbb{M}_{z} B\right)^{t}$ commute and there is a unique common eigenvector: $(4,-1,-5)$

What we can learn more

$$
F=\left(x^{2}+y^{2}+6 x z-8 z^{2}\right)(4 x-y-5 z)
$$

Start with $r=3$,
$\left(M_{y} B\right)^{t}$ and $\left(\mathbb{M}_{z} B\right)^{t}$ commute and there is a unique common eigenvector: $(4,-1,-5)$

What we can learn more

$$
F=\left(x^{2}+y^{2}+6 x z-8 z^{2}\right)(4 x-y-5 z)
$$

Start with $r=3$,
$\left(\mathbb{M}_{y} B\right)^{t}$ and $\left(\mathbb{M}_{z} B\right)^{t}$ commute and there is a unique common eigenvector: $(4,-1,-5)$ and both their Jordan decompositions have 1 rank-3 block.

What we can learn more

$$
F=\left(x^{2}+y^{2}+6 x z-8 z^{2}\right)(4 x-y-5 z)
$$

Start with $r=3$,
$\left(M_{y} B\right)^{t}$ and $\left(M_{z} B\right)^{t}$ commute and there is a unique common
eigenvector: $(4,-1,-5)$ and both their Jordan decompositions have 1 rank-3 block.
Since $r / 2>1$ there is no tg. decomposition for F with $r=3$, i.e.

$$
F \neq L_{1}^{3-1} L_{2}+L_{3}^{3}
$$

for any linear form L_{1}, L_{2}, L_{3}.

What we can learn more

$$
F=\left(x^{2}+y^{2}+6 x z-8 z^{2}\right)(4 x-y-5 z)
$$

Start with $r=3$,
$\left(\mathbb{M}_{y} B\right)^{t}$ and $\left(\mathbb{M}_{z} B\right)^{t}$ commute and there is a unique common
eigenvector: $(4,-1,-5)$ and both their Jordan decompositions have 1 rank-3 block.
Since $r / 2>1$ there is no tg. decomposition for F with $r=3$, i.e.

$$
F \neq L_{1}^{3-1} L_{2}+L_{3}^{3}
$$

for any linear form L_{1}, L_{2}, L_{3}.
Claim: Since we did not fill any \mathbf{h}, this is the unique decomposition of F of type

$$
F=L^{3-2} N
$$

with N a quadratic form.
So, to recover N, it is sufficient to solve a linear system:

$$
F=\left(a x^{2}+b x y+c x z+d y^{2}+e y z+f z^{2}\right)(4 x-y-5 z)
$$

What we can learn more

Cactus decomposition

Non-definition (yet)

A cactus decomposition of $F \in R_{d}$ is a "minimal" way of writing F as

$$
F=\sum_{i=1}^{s} L_{i}^{d-k_{i}} N_{i}
$$

with $N_{i} \in R_{k_{i}}$.

What we can learn more

Cactus decomposition

Non-definition (yet)

A cactus decomposition of $F \in R_{d}$ is a "minimal" way of writing F as

$$
F=\sum_{i=1}^{s} L_{i}^{d-k_{i}} N_{i}
$$

with $N_{i} \in R_{k_{i}}$.

MINIMAL in which sense?

What we can learn more

Cactus decomposition

Proposition

$F=\sum_{i=1}^{s} L_{i}^{d-k_{i}} N_{i}$ iff $\exists \zeta_{1}, \ldots, \zeta_{s} \in \mathbb{K}^{n}$, an extension $\Lambda \in R^{*}$ of $f^{*} \in R_{\leq d}^{*}$ and $\left\{p_{i}\right\}_{i \in\{1, \ldots, d\}} \subseteq R$ s.t.

$$
\begin{equation*}
\Lambda=\sum_{i=1}^{s} \mathbb{1}_{\zeta_{i}} \circ p_{i}(\delta) \tag{1}
\end{equation*}
$$

What we can learn more

Proposition

$F=\sum_{i=1}^{s} L_{i}^{d-k_{i}} N_{i}$ iff $\exists \zeta_{1}, \ldots, \zeta_{s} \in \mathbb{K}^{n}$, an extension $\Lambda \in R^{*}$ of $f^{*} \in R_{\leq d}^{*}$ and $\left\{p_{i}\right\}_{i \in\{1, \ldots, d\}} \subseteq R$ s.t.

$$
\begin{equation*}
\Lambda=\sum_{i=1}^{s} \mathbb{1}_{\zeta_{i}} \circ p_{i}(\delta) \tag{1}
\end{equation*}
$$

Definition

Λ as in (1) such that

$$
r=\oplus_{i=1}^{s} \underbrace{\operatorname{dim}_{\mathbb{K}}\left\langle\left\{\mathbb{1}_{\zeta_{i}} \circ \partial^{\alpha} p_{i}\right\}_{|\alpha| \leq \operatorname{deg} p_{i}}\right\rangle_{\mathbb{k}}}_{:=r_{i}=\operatorname{mult}_{\mathbb{1}_{\zeta_{i}}}} .
$$

is minimal, is called a generalized decomposition of f^{*}.

What we can learn more

Cactus decomposition

Proposition

$F=\sum_{i=1}^{S} L_{i}^{d-k_{i}} N_{i}$ iff $\exists \zeta_{1}, \ldots, \zeta_{s} \in \mathbb{K}^{n}$, an extension $\Lambda \in R^{*}$ of $f^{*} \in R_{\leq d}^{*}$ and $\left\{p_{i}\right\}_{i \in\{1, \ldots, d\}} \subseteq R$ s.t.

$$
\begin{equation*}
\Lambda=\sum_{i=1}^{s} \mathbb{1}_{\zeta_{i}} \circ p_{i}(\delta) \tag{1}
\end{equation*}
$$

Definition

Λ as in (1) such that

$$
r=\oplus_{i=1}^{S} \underbrace{\operatorname{dim}_{\mathbb{K}}\left\langle\left\{\mathbb{1}_{\zeta_{i}} \circ \partial^{\alpha} p_{i}\right\}_{|\alpha| \leq \operatorname{deg} p_{i}}\right\rangle_{\mathbb{K}}}_{:=r_{i}=\text { mult } \mathbb{1}_{\zeta_{i}}} .
$$

is minimal, is called a generalized decomposition of f^{*}.

Definition and Theorem [-,B,M]

The minimal r for which there exists a generalized decomposition of $f^{*} \in R_{d}$ is the cactus rank of F.

What we can learn more

Cactus decomposition

Proposition

Let $\Lambda=\sum_{i=1}^{s} \mathbb{1}_{\zeta_{i}} \circ p_{i}(\delta)$ be a generalized decomposition of f^{*}. Then there exist $k_{i} \in \mathbb{K}, N_{i} \in R_{k_{i}}$ such that F can be written as

$$
\begin{equation*}
F=\sum_{i=1}^{s} L_{i}^{d-k_{i}} N_{i} . \tag{*}
\end{equation*}
$$

$(*)$ is called a cactus decomposition of F.

What we can learn more

Proposition

Let $\Lambda=\sum_{i=1}^{S} \mathbb{1}_{\zeta_{i}} \circ p_{i}(\delta)$ be a generalized decomposition of f^{*}. Then there exist $k_{i} \in \mathbb{K}, N_{i} \in R_{k_{i}}$ such that F can be written as

$$
\begin{equation*}
F=\sum_{i=1}^{s} L_{i}^{d-k_{i}} N_{i} . \tag{*}
\end{equation*}
$$

$(*)$ is called a cactus decomposition of F.
Can we recover a cactus decomposition of a given $F \in R_{d}$?

What we can learn more

Cactus decomposition

[BCMT] Theorem

Let $F \in R_{d}$.
The minim r for which \exists an extension $\Lambda \in R^{*}$ of f^{*} with $r \mathrm{kH} H_{\Lambda}=r$

The minimum r which allows to fill $H_{\wedge}(\mathbf{h})$ in order to have commuting multiplication operators.

What we can learn more

[BCMT] Theorem

Let $F \in R_{d}$.
The minim r for which \exists an extension $\Lambda \in R^{*}$ of f^{*} with $r \mathrm{k} H_{\Lambda}=r$

The minimum r which allows to fill $H_{\wedge}(\mathbf{h})$ in order to have commuting multiplication operators.

Find commuting operators \Rightarrow read the $\mathbb{1}_{\zeta_{i}}$'s as the common rank-1 eigenvectors for the $M_{x_{j}}^{t}$.

Algorithm
 Cactus rank

Input: A homogeneous polynomial $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree d.
Output: The cactus rank of F and the L_{i} s.t. $F=\sum_{i=1}^{k} \lambda_{i} L_{i}^{d-k_{i}} N_{i}$ is a cactus decomposition of F.

- Construct the matrix $H_{\Lambda}(\mathbf{h})$ with the parameters $\mathbf{h}=\left\{h_{\alpha}\right\}_{\alpha \in \mathbb{N}^{n}}$.

$$
|\alpha|>d
$$

- Set $r:=\mathrm{rkH} H_{f^{*}}$.

1. Compute a set B of a complete staircase monomials with $|B|=r$.
2. Find parameters \mathbf{h} s.t. $\operatorname{det}\left(H_{\Lambda}^{B}\right) \neq 0$ and the operators $M_{i}=\mathbb{H}_{i_{i} \star \lambda}^{B}\left(H_{\Lambda}^{B}\right)^{-1}$ commute.
3. If there is no solution, restart the loop with $r:=r+1$.

- Else Output 1) r is the cactus rank of F.

4 Compute the eigenvectors v_{1}, \ldots, v_{s} of a generic $\sum_{i} \alpha_{i} M_{i}^{B}$.

- Output 2) $L_{i}:=v_{i}, i=1, \ldots, s$.

What we can learn more

Cactus decomposition

Recall

Definition

The minimal $r=\oplus_{i=1}^{S} \operatorname{dim}_{\mathbb{K}}\left\langle\left\{\mathbb{1}_{\zeta_{i}} \circ \partial^{\alpha} p_{i}\right\}_{|\alpha| \leq \operatorname{deg} p_{i}}\right\rangle_{\mathbb{K}}$ for which there exists $:=r_{i}=$ mult $\mathbb{1}_{\zeta_{i}}$
a generalized decomposition of $F \in R_{d}$ is the cactus rank of F.

What we can learn more

Recall

Definition

The minimal $r=\oplus_{i=1}^{S} \underbrace{\operatorname{dim}_{\mathbb{K}}\left\langle\left\{\mathbb{1}_{\zeta_{i}} \circ \partial^{\alpha} p_{i}\right\}_{|\alpha| \leq \operatorname{deg} p_{i}}\right\rangle_{\mathbb{K}}}_{:=r_{i}=\text { mult } \mathbb{1}_{\zeta_{i}}}$ for which there exists
a generalized decomposition of $F \in R_{d}$ is the cactus rank of F.
The last thing that we can do is to recover each r_{i}.

What we can learn more

$F \in R_{d}, \Lambda=\sum_{i=1}^{s} \mathbb{1}_{\zeta_{i}} \circ p_{i}(\delta) \in R^{*}$ a generalized decomposition of f^{*}.

Theorem

For every $j \in\{1, \ldots, n\}$ and every $\alpha \in \mathbb{N}^{n}$ the element

$$
\mathbb{1}_{\zeta_{i}} \circ\left(\partial^{\alpha} p_{i}\right)(\delta) \in \mathcal{A}_{\wedge}^{*}
$$

is either the zero map or a generalized eigenvector common to every $M_{x_{j}}^{t}$ with eigenvalue $\left(\zeta_{i}\right)_{j}$.

What we can learn more

Cactus decomposition
$F \in R_{d}, \Lambda=\sum_{i=1}^{S} \mathbb{1}_{\zeta_{i}} \circ p_{i}(\delta) \in R^{*}$ a generalized decomposition of f^{*}.

Theorem

For every $j \in\{1, \ldots, n\}$ and every $\alpha \in \mathbb{N}^{n}$ the element

$$
\mathbb{1}_{\zeta_{i}} \circ\left(\partial^{\alpha} p_{i}\right)(\delta) \in \mathcal{A}_{\Lambda}^{*}
$$

is either the zero map or a generalized eigenvector common to every $M_{x_{j}}^{t}$ with eigenvalue $\left(\zeta_{i}\right) j$.

Corollary

If $V^{j}[\mu]$ is the generalized eigenspace of $M_{x_{j}}^{t}$ relative to the eigenvalue μ, then for every $i \in\{1, \ldots, s\}$ the multiplicity of $\mathbb{1}_{\zeta_{i}}$ is given by

$$
\text { mult } \mathbb{1}_{\zeta_{i}}=\operatorname{dim}_{\mathbb{K}} \cap_{j=1}^{n} V^{j}\left[\left(\zeta_{i}\right)_{j}\right]
$$

Back to a previous example

$F=2 x^{6}(x+y+z)+(x-y)^{6} x-5(x-3 z)^{6} x$.
Common eigenvectors of $\left(\mathbb{M}_{y}^{B}\right)^{t}$ and $\left(\mathbb{M}_{z}^{B}\right)^{t}$:
$v_{1}=(1,0,0,0,0,0) \in V^{y}[0], V^{z}[0]$,
$V_{2}=(1,-1,0,1,0,-1) \in V^{y}[-1], V^{z}[0]$,
$v_{3}=(1,0,-3,0,9,0) \in V^{y}[0], V^{z}[-3]$.

Back to a previous example

Tangential decomposition was cactus
$F=2 x^{6}(x+y+z)+(x-y)^{6} x-5(x-3 z)^{6} x$.
Common eigenvectors of $\left(\mathbb{M}_{y}^{B}\right)^{t}$ and $\left(\mathbb{M}_{z}^{B}\right)^{t}$:
$v_{1}=(1,0,0,0,0,0) \in V^{y}[0], V^{z}[0]$,
$V_{2}=(1,-1,0,1,0,-1) \in V^{y}[-1], V^{z}[0]$,
$V_{3}=(1,0,-3,0,9,0) \in V^{y}[0], V^{z}[-3]$.
generalized eigenspaces:

Algorithm

Input: A homogeneous polynomial $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree d.
Output: All multiplicity of the $\mathbb{1}_{\zeta}$'s of the generalized decomposition of f^{*}.

- Construct the matrix $H_{\Lambda}(\mathbf{h})$ with the parameters $\mathbf{h}=\left\{h_{\alpha}\right\}_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|>d}}$.
- Set $r:=$ rkH $H_{f^{*}}^{\square}$.
- Compute a set B of a complete staircase monomials with $|B|=r$.
- Find parameters h s.t. $\operatorname{det}\left(\mathbb{H}_{\Lambda}^{B}\right) \neq 0$ and the operators $M_{i}=\mathbb{H}_{x_{i} \star \Lambda}^{B}\left(\mathbb{H}_{\Lambda}^{B}\right)^{-1}$ commute.
- If there is no solution, restart the loop with $r:=r+1$. Else r is the cactus rank of f.
- Compute the common eigenvectors v_{1}, \ldots, v_{s} of the $\mathbb{M}_{j}^{B \prime}$ s and $V^{j}\left[\left(\zeta_{1}\right)_{j}\right]$ the generalized eigenspace of $M_{x_{j}}^{t}$ relative to the eigenvalue $\left(\zeta_{1}\right)_{j}$
- Output mult $\mathbb{1}_{\zeta_{i}}=\operatorname{dim}_{\mathfrak{k}} \cap_{j=1}^{n} V^{j}\left[\left(\zeta_{i}\right)_{j}\right]$.

Further work

- Get any cactus decomposition explicitly? $F=\sum_{i=1}^{s} \lambda_{i} L^{d-k_{i}} N_{i}$. (recovering the k_{i} 's? recovering the N_{i} 's?)

Further work

- Get any cactus decomposition explicitly? $F=\sum_{i=1}^{s} \lambda_{i} L^{d-k_{i}} N_{i}$. (recovering the k_{i} 's? recovering the N_{i} 's?)
- More selective choices of B ? May these lead to bounds on r ?

Further work

- Get any cactus decomposition explicitly? $F=\sum_{i=1}^{s} \lambda_{i} L^{d-k_{i}} N_{i}$. (recovering the k_{i} 's? recovering the N_{i} 's?)
- More selective choices of B ? May these lead to bounds on r ?
- How to deal with the h's?

Further work

- Get any cactus decomposition explicitly? $F=\sum_{i=1}^{s} \lambda_{i} L^{d-k_{i}} N_{i}$. (recovering the k_{i} 's? recovering the N_{i} 's?)
- More selective choices of B ? May these lead to bounds on r ?
- How to deal with the h's?
- Serious implementation? Complexity?

Thanks!

