Department of Mathematics - University of Trento

Algorithms for rank and cactus rank of a polynomial

Alessandra Bernardi | alessandra.bernardi@unitn.it Daniele Taufer | daniele.taufer@unitn.it

November 14, 2018

Outline

[BCMT] Symmetric Tensor Decomposition, 2010

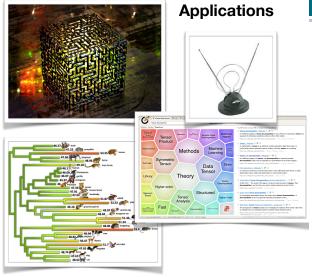
J. Brachat, P. Comon, B. Mourrain and E. Tsigaridas. Linear Algebra and its Applications, 433 (11–12), pp. 1851-1872.

The STD algorithm

Proposed refinements

What we can learn more Tangential decomposition Cactus decomposition

Further work



You have...

$$F = -4xy + 2xz + 2yz + z^2.$$

You want...

$$F = (x - y)^{2} - 2(x + y)^{2} + (x + y + z)^{2}.$$

You have...

$$F = -4xy + 2xz + 2yz + z^{2},$$

$$f = F_{x=1} = -4y + 2z + 2yz + z^{2}.$$

You want...

$$F = (x - y)^2 - 2(x + y)^2 + (x + y + z)^2.$$

$$f = F_{x=1} = (1 - y)^2 - 2(1 + y)^2 + (1 + y + z)^2.$$

$$R = \mathbb{K}[x_1, \dots, x_n].$$

Apolar polynomial

$$f = \sum_{|\alpha| \le d} f_{\alpha} \mathbf{x}^{\alpha} \in R_{\le d}$$

$$\downarrow$$

$$f^*: R_{\leq d} \to \mathbb{K},$$

$$g = \sum_{|\alpha| \leq d} g_{\alpha} \mathbf{x}^{\alpha} \mapsto \langle f, g \rangle = \sum_{|\alpha| \leq d} \frac{f_{\alpha} g_{\alpha}}{\binom{d}{\alpha}}$$

Apolar polynomial

$$f^* = \left(\sum_{|\alpha| \le d} f_{\alpha} \mathbf{x}^{\alpha}\right)^* : R_{\le d} \to \mathbb{K},$$

$$g = \sum_{|\alpha| \le d} g_{\alpha} \mathbf{x}^{\alpha} \mapsto \langle f, g \rangle = \sum_{|\alpha| \le d} \frac{f_{\alpha} g_{\alpha}}{\binom{d}{\alpha}}$$

Dual map

$$\tau:R_{\leq d}\hookrightarrow R_{\leq d}^*,$$

$$f=\sum_{i=1}^r\lambda_i\big(1+I_{1i}x_1+\cdots+I_{ni}x_n\big)^d\mapsto f^*=\sum_{i=1}^r\lambda_i\mathbb{1}_{(I_{1i},\ldots,I_{ni})}.$$

Dual map

$$\tau: R_{\leq d} \hookrightarrow R_{\leq d}^*,$$

$$f = \sum_{i=1}^r \lambda_i (1 + I_{1i}x_1 + \dots + I_{ni}x_n)^d \mapsto f^* = \sum_{i=1}^r \lambda_i \mathbb{1}_{(I_{1i},\dots,I_{ni})}.$$

Aim

Find $\Lambda \in \mathbb{R}^*$ that restricts to f^* on $\mathbb{R}_{\leq d}$:

$$\Lambda|_{R_{\leq d}} = f^*$$
.

Let $\Lambda \in \mathbb{R}^*$. Define

the Henkel operator of Λ as

$$H_{\Lambda}: R \to R^*,$$

 $r \mapsto r \star \Lambda = (t \mapsto \Lambda(rt)),$

- $I_{\Lambda} = \ker H_{\Lambda}$,
- $A_{\Lambda} = R/I_{\Lambda}$,
- the multiplication by r operators on \mathcal{A}_{Λ} and $\mathcal{A}_{\Lambda}^{*}$ as

$$M_r: \mathcal{A}_{\Lambda} \to \mathcal{A}_{\Lambda}, \qquad M_r^t: \mathcal{A}_{\Lambda}^* \to \mathcal{A}_{\Lambda}^*,$$

 $t \mapsto r \cdot t, \qquad \phi \mapsto r \star \phi.$

[BCMT] Theorem

Let $\Lambda \in \mathbb{R}^*$ and $r \in \mathbb{N}_{>0}$. The following are equivalent:

▶ There exist non-zero constants $\{\lambda_i\}_{i \in \{1,...,r\}}$ and distinct points $\{\zeta_i\}_{i \in \{1,...,r\}} \subseteq \mathbb{K}^n$ such that

$$\Lambda = \sum_{i=1}^r \lambda_i \mathbb{1}_{\zeta_i}.$$

• $rkH_{\Lambda} = r$ and I_{Λ} is a radical ideal.

Theorem

Let $\Lambda \in R^*$ such that I_{Λ} is 0-dimensional and \mathcal{A}_{Λ} is an r-dimensional \mathbb{K} -vector space. Then the following are equivalent:

- ▶ Up to \mathbb{K} -multiplication, there are r distinct common eigenvectors of $\{M_{x_i}^t\}_{i \in \{1,...,n\}}$.
- I_{Λ} is radical.

Theorem

Let $\Lambda \in R^*$ such that I_{Λ} is 0-dimensional and \mathcal{A}_{Λ} is an r-dimensional \mathbb{K} -vector space.

• $V(I_{\Lambda}) = \{\zeta_1, \dots, \zeta_s\}$ is radical if and only if s = r since $A_{\Lambda} = R/I_{\Lambda}$ and $\dim(A_{\Lambda}) = r$.

Then the following are equivalent:

- ▶ Up to \mathbb{K} -multiplication, there are r distinct common eigenvectors of $\{M_{x_i}^t\}_{i \in \{1,...,n\}}$.
 - Eigenvalues of M_{x_i} and $M_{x_i}^t$ are $\{x_i(\zeta_1), \dots, x_i(\zeta_s)\}$. [Stickelberger]
 - v is an eigenvector for every $\{M_{x_i}^t\}_{i\in\{1,\ldots,n\}}$ if and only if there exist $\zeta_1,\ldots,\zeta_s\in\mathbb{K}^n$ and $k\neq 0$ such that $v=k\mathbb{1}_{\zeta_i}$.
- I_{Λ} is radical.

Let $f = -4y + 2z + 2yz + z^2$. We know some entries of \mathbb{H}_{Λ} :

$$\mathbb{H}_{\Lambda} = \left(\begin{array}{c|cccc} & 1 & y & z & y^2 & yz & z^2 \\ \hline 1 & f^*(1) & f^*(y) & f^*(z) & f^*(y^2) & f^*(yz) & f^*(z^2) \\ y & f^*(y) & f^*(y^2) & f^*(yz) \\ z & f^*(z) & f^*(yz) & f^*(z^2) \\ y^2 & f^*(y^2) & & & & ? \\ z^2 & f^*(z^2) & & & & ? \end{array} \right).$$

Let
$$f = -4y + 2z + 2yz + z^2$$
.

$$\mathbb{H}_{\Lambda}(\mathbf{h}) = \begin{pmatrix} & 1 & y & z & y^2 & yz & z^2 \\ \hline 1 & 0 & -2 & 1 & 0 & 1 & 1 \\ y & -2 & 0 & 1 & h_{(3,0)} & h_{(2,1)} & h_{(1,2)} \\ z & 1 & 1 & 1 & h_{(2,1)} & h_{(1,2)} & h_{(0,3)} \\ y^2 & 0 & h_{(3,0)} & h_{(2,1)} & h_{(4,0)} & h_{(3,1)} & h_{(2,2)} \\ yz & 1 & h_{(2,1)} & h_{(1,2)} & h_{(3,1)} & h_{(2,2)} & h_{(1,3)} \\ z^2 & 1 & h_{(1,2)} & h_{(0,3)} & h_{(2,2)} & h_{(1,3)} & h_{(0,4)} \end{pmatrix}.$$

We want values for **h** such that $rkH_{\Lambda} = r$ and I_{Λ} is radical.

Let
$$f = -4y + 2z + 2yz + z^2$$
.

$$\mathbb{H}_{\Lambda}(\mathbf{h}) = \begin{pmatrix} & 1 & y & z & y^2 & yz & z^2 \\ \hline 1 & 0 & -2 & 1 & 0 & 1 & 1 \\ y & -2 & 0 & 1 & h_{(3,0)} & h_{(2,1)} & h_{(1,2)} \\ z & 1 & 1 & 1 & h_{(2,1)} & h_{(1,2)} & h_{(0,3)} \\ y^2 & 0 & h_{(3,0)} & h_{(2,1)} & h_{(4,0)} & h_{(3,1)} & h_{(2,2)} \\ yz & 1 & h_{(2,1)} & h_{(1,2)} & h_{(3,1)} & h_{(2,2)} & h_{(1,3)} \\ z^2 & 1 & h_{(1,2)} & h_{(0,3)} & h_{(2,2)} & h_{(1,3)} & h_{(0,4)} \end{pmatrix}$$

We guess that $B = \{1, y, z\}$ is a basis for A_{Λ} , so that r = 3. Define

$$\mathbb{H}_{\Lambda}^{B} = \begin{pmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Let $f = -4y + 2z + 2yz + z^2$.

$$\mathbb{H}_{\Lambda}(\mathbf{h}) = \begin{pmatrix} & 1 & y & z & y^2 & yz & z^2 \\ \hline 1 & 0 & -2 & 1 & 0 & 1 & 1 \\ y & -2 & 0 & 1 & h_{(3,0)} & h_{(2,1)} & h_{(1,2)} \\ z & 1 & 1 & 1 & h_{(2,1)} & h_{(1,2)} & h_{(0,3)} \\ y^2 & 0 & h_{(3,0)} & h_{(2,1)} & h_{(4,0)} & h_{(3,1)} & h_{(2,2)} \\ yz & 1 & h_{(2,1)} & h_{(1,2)} & h_{(3,1)} & h_{(2,2)} & h_{(1,3)} \\ z^2 & 1 & h_{(1,2)} & h_{(0,3)} & h_{(2,2)} & h_{(1,3)} & h_{(0,4)} \end{pmatrix}$$

We guess that $B = \{1, y, z\}$ is a basis for A_{Λ} , so that r = 3. Define

$$\mathbb{H}^{B}_{\Lambda} = \left(\begin{array}{ccc} 0 & -2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 1 \end{array} \right), \qquad \mathbb{H}^{B}_{y \star \Lambda} = \left(\begin{array}{ccc} -2 & 0 & 1 \\ 0 & h_{(3,0)} & h_{(2,1)} \\ 1 & h_{(1,2)} & h_{(1,2)} \end{array} \right).$$

Let
$$f = -4y + 2z + 2yz + z^2$$
.
We guess that $B = \{1, y, z\}$ is a basis for A_{Λ} , so that $r = 3$. Define

$$\mathbb{M}^B_Z = \mathbb{H}^B_{Z \star \Lambda} \big(\mathbb{H}^B_{\Lambda} \big)^{-1} = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ -\frac{3}{8}h_{(2,1)} + \frac{1}{4}h_{(1,2)} + \frac{1}{8} & \frac{1}{8}h_{(2,1)} + \frac{1}{4}h_{(1,2)} - \frac{3}{8} & \frac{1}{4}h_{(2,1)} + \frac{1}{2}h_{(1,2)} + \frac{1}{4} \\ -\frac{3}{8}h_{(1,2)} + \frac{1}{4}h_{(0,3)} + \frac{1}{8} & \frac{1}{8}h_{(1,2)} + \frac{1}{4}h_{(0,3)} - \frac{3}{8} & \frac{1}{4}h_{(1,2)} + \frac{1}{2}h_{(0,3)} + \frac{1}{4} \\ \end{array} \right).$$

Let $f = -4y + 2z + 2yz + z^2$.

We guess that $B = \{1, y, z\}$ is a basis for A_{Λ} , so that r = 3. Define

$$\mathbb{M}^B_y = \mathbb{H}^B_{y \star \Lambda} \big(\mathbb{H}^B_{\Lambda} \big)^{-1} = \left(\begin{array}{ccccccc} 0 & 1 & 0 \\ -\frac{3}{8}h_{(3,0)} + \frac{1}{4}h_{(2,1)} & \frac{1}{8}h_{(3,0)} + \frac{1}{4}h_{(2,1)} & \frac{1}{4}h_{(3,0)} + \frac{1}{2}h_{(2,1)} \\ -\frac{3}{8}h_{(2,1)} + \frac{1}{4}h_{(1,2)} + \frac{1}{8} & \frac{1}{8}h_{(2,1)} + \frac{1}{4}h_{(1,2)} - \frac{3}{8} & \frac{1}{4}h_{(2,1)} + \frac{1}{2}h_{(1,2)} + \frac{1}{4} \\ \end{array} \right),$$

We want multiplication operators to commute!

$$\label{eq:maps_bound} \begin{split} \mathbb{M}_y^B \mathbb{M}_z^B - \mathbb{M}_z^B \mathbb{M}_y^B &= 0. \\ \to h_{(3,0)} &= -2, \ h_{(2,1)} &= 1, \ h_{(2,1)} &= 1, \ h_{(2,1)} &= 4. \end{split}$$

Let
$$f = -4y + 2z + 2yz + z^2$$
.

$$(\mathbb{M}_{y}^{B})^{t} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \text{Eigenspaces:} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}.$$

$$(\mathbb{M}_{z}^{B})^{t} = \begin{pmatrix} 0 & 0 & \frac{3}{4} \\ 0 & 0 & \frac{3}{4} \\ 1 & 1 & \frac{5}{2} \end{pmatrix} \rightarrow \text{Eigenspaces:} \begin{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -\frac{1}{2} \end{pmatrix} \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} \end{pmatrix}.$$

Let
$$f = -4y + 2z + 2yz + z^2$$
.

Common eigenspaces:
$$\left(\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right), \left(\begin{pmatrix} 1 \\ 1 \\ -\frac{1}{2} \end{pmatrix} \right), \left(\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} \right)$$
.

Solve in
$$\lambda_i$$
: $f = \lambda_1 \left(1 - 1y + 0z \right)^2 + \lambda_2 \left(1 + 1y - \frac{1}{2}z \right)^2 + \lambda_3 \left(1 + 1y + 3z \right)^2$.

$$\lambda_1 = 1 \qquad \qquad \lambda_2 = -\frac{8}{7} \qquad \qquad \lambda_3 = \frac{1}{7}$$

Conclusion:
$$f = (1 - y)^2 - \frac{8}{7}(1 + y - \frac{1}{2}z)^2 + \frac{1}{7}(1 + y + 3z)^2$$
.

STD algorithm

As proposed in [BCMT]

Algorithm: Symmetric tensor decomposition

Input: A homogeneous polynomial $F(x_0, x_1, \dots, x_n)$ of degree d. **Output:** A decomposition of *F* as $F = \sum_{i=1}^{r} \lambda_i L_i^d$ with *r* minimal.

- Compute the coefficients of f^* : $c_{\alpha} = a_{\alpha} {d \choose \alpha}^{-1}$, for $|\alpha| \le d$.
- r := 1.
- repeat
 - 1. Compute a set B of monomials of degree at most d connected to one with |B| = r.
 - 2. Find parameters **h** s.t. $det(\mathbb{H}_{\Lambda}^{B}) \neq 0$ and the operators $\mathbb{M}_i = \mathbb{H}^B_{X_i \star \Lambda}(\mathbb{H}^B_{\Lambda})^{-1}$ commute.
 - 3. If there is no solution, restart the loop with r := r + 1.
 - 4. Else compute the $n \times r$ eigenvalues $\zeta_{i,j}$ and the eigenvectors \mathbf{v}_i s.t. M_i **v**_i = $\zeta_{i,j}$ **v**_i, $i = 1, \ldots, n, j = 1, \ldots, r$.

until the eigenvalues are simple.

▶ Solve the linear system in $(I_i)_{i=1,...,k}$: $\Lambda = \sum_{i=1}^r I_i \mathbb{1}_{\zeta_i}$ where $\zeta_i \in \mathbb{K}^n$ are the eigenvectors found in step 4.

0) Essential variables

Input: A homogeneous polynomial $F(x_0, x_1, ..., x_n)$ of degree d written by using a general set of essential variables.

Output: A decomposition of f as $F = \sum_{i=1}^{r} \lambda_i \mathbf{k_i}(\mathbf{x})^d$ with r minimal.

- Compute the coefficients of f^* : $c_{\alpha} = a_{\alpha} {d \choose \alpha}^{-1}$, for $|\alpha| \le d$.
- r := 1.
- repeat
 - Compute a set B of monomials of degree at most d connected to one with |B| = r.
 - 2. Find parameters **h** s.t. $\det(\mathbb{H}_{\Lambda}^{B}) \neq 0$ and the operators $\mathbb{M}_{i} = \mathbb{H}_{x_{i} + \Lambda}^{B} (\mathbb{H}_{\Lambda}^{B})^{-1}$ commute.
 - 3. If there is no solution, restart the loop with r := r + 1.
 - 4. Else compute the $n \times r$ eigenvalues $\zeta_{i,j}$ and the eigenvectors $\mathbf{v_j}$ s.t. $\mathbb{M}_i \mathbf{v_j} = \zeta_{i,j} \mathbf{v_j}, i = 1, \dots, n, j = 1, \dots, r$.

until the eigenvalues are simple.

Solve the linear system in $(I_j)_{j=1,...,k}$: $\Lambda = \sum_{i=1}^r I_j \mathbb{1}_{\zeta_i}$ where $\zeta_i \in \mathbb{K}^n$ are the eigenvectors found in step 4.

Algorithm: Symmetric tensor decomposition

Input: A homogeneous polynomial $F(x_0, x_1, ..., x_n)$ of degree d written by using a general set of essential variables.

• General: De-homog. by x_0 implies decomp. of type

$$f = \sum_{i=1}^{r} \lambda_i (\mathbf{1} + \alpha_i I_i(X_1, \dots, X_n))^d$$

Essential variables:

$$x^3 + (x + y + z)^3$$

2 essential variables and rank $2 \Rightarrow$ Any basis made of 2 elements \Rightarrow we can recover at most 2 coefficients of the linear forms.

1) The starting *r*

Algorithm: Symmetric tensor decomposition

Input: A homogeneous polynomial $F(x_0, x_1, ..., x_n)$ of degree d.

written by using a general set of essential variables.

Output: A decomposition of F as $F = \sum_{i=1}^{r} \lambda_i \mathbf{k_i}(\mathbf{x})^d$ with r minimal.

- Compute the coefficients of f^* : $c_{\alpha} = a_{\alpha} {d \choose \alpha}^{-1}$, for $|\alpha| \le d$.
- r := #EssVar(f)?
- repeat
 - Compute a set B of monomials of degree at most d connected to one with |B| = r.
 - 2. Find parameters **h** s.t. $det(\mathbb{H}_{\Lambda}^{B}) \neq 0$ and the operators $\mathbb{M}_{i} = \mathbb{H}_{\mathbf{X}_{i} + \Lambda}^{B}(\mathbb{H}_{\Lambda}^{B})^{-1}$ commute.
 - 3. If there is no solution, restart the loop with r := r + 1.
 - 4. Else compute the $n \times r$ eigenvalues $\zeta_{i,j}$ and the eigenvectors $\mathbf{v_j}$ s.t. $\mathbb{M}_i \mathbf{v_j} = \zeta_{i,j} \mathbf{v_j}, i = 1, \dots, n, j = 1, \dots, r$.

until the eigenvalues are simple.

▶ Solve the linear system in $(I_j)_{j=1,...,k}$: $\Lambda = \sum_{i=1}^r I_j \mathbb{1}_{\zeta_i}$ where $\zeta_i \in \mathbb{K}^n$ are the eigenvectors found in step 4.

1) The starting *r*

Algorithm: Symmetric tensor decomposition

Input: A homogeneous polynomial $F(x_0, x_1, ..., x_n)$ of degree d.

written by using a general set of essential variables.

Output: A decomposition of F as $F = \sum_{i=1}^{r} \lambda_i \mathbf{k_i}(\mathbf{x})^d$ with r minimal.

- Compute the coefficients of f^* : $c_{\alpha} = a_{\alpha} {d \choose \alpha}^{-1}$, for $|\alpha| \le d$.
- r := 1. r := rk(Maximal numerical submatrix of H_{Λ}).
- repeat
 - Compute a set B of monomials of degree at most d connected to one with |B| = r.
 - 2. Find parameters **h** s.t. $det(\mathbb{H}_{\Lambda}^{B}) \neq 0$ and the operators $\mathbb{M}_{i} = \mathbb{H}_{\mathbf{X}_{i} + \Lambda}^{B}(\mathbb{H}_{\Lambda}^{B})^{-1}$ commute.
 - 3. If there is no solution, restart the loop with r := r + 1.
 - 4. Else compute the $n \times r$ eigenvalues $\zeta_{i,j}$ and the eigenvectors $\mathbf{v_j}$ s.t. $\mathbb{M}_i \mathbf{v_j} = \zeta_{i,j} \mathbf{v_j}, i = 1, \dots, n, j = 1, \dots, r$.

until the eigenvalues are simple.

▶ Solve the linear system in $(I_j)_{j=1,...,k}$: $\Lambda = \sum_{i=1}^r I_j \mathbb{1}_{\zeta_i}$ where $\zeta_i \in \mathbb{K}^n$ are the eigenvectors found in step 4.

1) The starting *r*

- $r := rk(Maximal numerical submatrix of <math>H_{\Lambda})$.
- 1. (I.K.) \rightsquigarrow (rk(Maximal numerical submatrix of H_{Λ})) \leq rk(F) so we do not miss good decompositions.

1) The starting r

- r := rk(Maximal numerical submatrix of H_{Λ}).
- 1. (I.K.) \rightsquigarrow (rk(Maximal numerical submatrix of H_{Λ})) \leq rk(F) so we do not miss good decompositions.
- 2. Not only a matter of time consuming:

$$F = x^{4} + (x + y)^{4} + (x - y)^{4} = 3x^{4} + 12x^{2}y^{2} + 2y^{4}$$

$$\begin{pmatrix} 3 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & h_{5} \\ 0 & 2 & h_{5} & h_{6} \end{pmatrix}$$

1) The starting r

- $r := rk(Maximal numerical submatrix of <math>H_{\Lambda}$).
- 1. (I.K.) \rightsquigarrow (rk(Maximal numerical submatrix of H_{Λ})) \leq rk(F) so we do not miss good decompositions.
- 2. Not only a matter of time consuming:

$$F = x^{4} + (x + y)^{4} + (x - y)^{4} = 3x^{4} + 12x^{2}y^{2} + 2y^{4}$$

$$\begin{pmatrix} 3 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & h_{5} \\ 0 & 2 & h_{5} & h_{6} \end{pmatrix}$$

Start with r = 2 (instead of r = 3). Only one basis: $B = \{1, y\}$.

$$\mathbb{M}_{y}^{B} = \begin{pmatrix} 0 & 1 \\ \frac{2}{3} & 0 \end{pmatrix}$$
 has two eigenvectors $(\pm \sqrt{3/2}, 1)$

but the system $F = \lambda_1(\sqrt{3/2}x + y)^3 + \lambda_2(-\sqrt{3/2}x + y)^3$ has no solutions.

1) The starting *r*

- r := rk(Maximal numerical submatrix of H_{Λ}).
- 1. (I.K.) \rightsquigarrow (rk(Maximal numerical submatrix of H_{Λ})) \leq rk(F) so we do not miss good decompositions.
- 2. Not only a matter of time consuming:

$$F = x^{4} + (x + y)^{4} + (x - y)^{4} = 3x^{4} + 12x^{2}y^{2} + 2y^{4}$$

$$\begin{pmatrix} 3 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & h_{5} \\ 0 & 2 & h_{5} & h_{6} \end{pmatrix}$$

Start with r = 2 (instead of r = 3). Only one basis: $B = \{1, y\}$.

$$\mathbb{M}_y^B = \begin{pmatrix} 0 & 1 \\ \frac{2}{3} & 0 \end{pmatrix}$$
 has two eigenvectors $(\pm \sqrt{3/2}, 1)$

but the system $F = \lambda_1(\sqrt{3/2}x + y)^3 + \lambda_2(-\sqrt{3/2}x + y)^3$ has no solutions. Ignore the condition imposed by the coefficients of y^3 , then system has solution, that is $\lambda_1 = \lambda_2 = \frac{2}{3}$ which lead to $G = 3x^4 + 12x^2y^2 + \frac{4}{3}y^4$.

2) Connection to one vs staircases

Input: A homogeneous polynomial $F(x_0, x_1, ..., x_n)$ of degree d.

written by using a general set of essential variables.

Output: A decomposition of F as $F = \sum_{i=1}^{r} \lambda_i \mathbf{k_i}(\mathbf{x})^d$ with r minimal.

- Compute the coefficients of f^* : $c_{\alpha} = a_{\alpha} {d \choose \alpha}^{-1}$, for $|\alpha| \le d$.
- r := rk(largest numerical submatrix of H_{Λ}).
- repeat
 - 1. Compute a set B of monomials of degree at most d connected to one which is a complete staircase with |B| = r.
 - 2. Find parameters **h** s.t. $det(\mathbb{H}_{\Lambda}^{B}) \neq 0$ and the operators $\mathbb{M}_{i} = \mathbb{H}_{\mathbf{X}_{i} + \Lambda}^{B}(\mathbb{H}_{\Lambda}^{B})^{-1}$ commute.
 - 3. If there is no solution, restart the loop with r := r + 1.
 - **4.** Else compute the $n \times r$ eigenvalues $\zeta_{i,j}$ and the eigenvectors $\mathbf{v_j}$ s.t. $\mathbb{M}_i \mathbf{v_j} = \zeta_{i,j} \mathbf{v_j}$, $i = 1, \dots, n, j = 1, \dots, r$.

until the eigenvalues are simple.

Solve the linear system in $(I_j)_{j=1,...,k}$: $\Lambda = \sum_{i=1}^r I_j \mathbb{1}_{\zeta_j}$ where $\zeta_i \in \mathbb{K}^n$ are the eigenvectors found in step 4.

2) Connection to one vs staircases

Connection to one: $B = \{1, y, y^2, y^2z, y^3\}$. Complete staircase: $B = \{1, y, z, y^2, yz\}$.

Theorem

Let $F \in R$ be homogeneous written by using essential variables and let $\Lambda \in R^*$ be an extension of $f^* \in R^*_{\leq d}$. Then there is a monomial basis B of \mathcal{A}_{Λ} such that B is a complete staircase.

Comparison with 3 variables

Size of B	# Complete staircases	# Connected to 1
3	1	5
4	3	13
5	5	35
6	9	96
7	13	267

3) Common eigenvectors

Input: A homogeneous polynomial $F(x_0, x_1, ..., x_n)$ of degree d.

written by using a general set of essential variables.

Output: A decomposition of F as $F = \sum_{i=1}^{r} \lambda_i \mathbf{k_i}(\mathbf{x})^d$ with r minimal.

- Compute the coefficients of f^* : $c_{\alpha} = a_{\alpha} {d \choose \alpha}^{-1}$, for $|\alpha| \le d$.
- r := rk(largest numerical submatrix of H_{Λ}).
- repeat
 - Compute a set B of monomials of degree at most d which is a complete staircase with |B| = r.
 - 2. Find parameters **h** s.t. $\det(\mathbb{H}_{\Lambda}^{B}) \neq 0$ and the operators $\mathbb{M}_{i} = \mathbb{H}_{X_{i} \star \Lambda}^{B} (\mathbb{H}_{\Lambda}^{B})^{-1}$ commute.
 - 3. If there is no solution, restart the loop with r := r + 1.
 - 4. Else compute the $n \times r$ eigenvalues $\zeta_{i,j}$ and the eigenvectors $\mathbf{v_j}$ s.t. $\mathbb{M}_i \mathbf{v_i} = \zeta_{i,i} \mathbf{v_i}, i = 1, \dots, n, j = 1, \dots, r$.

until the eigenvalues are simple. there are r common eigenvectors.

Solve the linear system in (I_j)_{j=1,...,k}: Λ = ∑_{i=1}^r I_j1_{ζj} where ζ_i ∈ Kⁿ are the eigenvectors found in step 4.

Example

$$F = (x + y)^{3} + (x + z)^{3} + (x + y + z)^{3}$$

$$\downarrow \qquad \qquad \downarrow$$

$$M_{y}^{B} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}, \quad M_{z}^{B} = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right).$$

What we can learn more

What we can learn more

Tangential decomposition

Let
$$F := (x + y)^5 + (x + z)^5 + (x + 2y)(x - y)^4$$
.
We check $r = 4$ and $B = \{1, y, z, y^2\}$.

$$\mathbb{M}_{y}^{B} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 \end{pmatrix}, \quad \mathbb{M}_{z}^{B} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

What we can learn more

Tangential decomposition

Let
$$F := (x + y)^5 + (x + z)^5 + (x + 2y)(x - y)^4$$
.
We check $r = 4$ and $B = \{1, y, z, y^2\}$.

$$\mathbb{M}_{y}^{B} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 \end{pmatrix}, \quad \mathbb{M}_{z}^{B} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle.$$

Tangential decomposition

Let
$$F := (x + y)^5 + (x + z)^5 + (x + 2y)(x - y)^4$$
.
We check $r = 4$ and $B = \{1, y, z, y^2\}$.

$$\mathbb{M}_{y}^{B} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 \end{pmatrix}, \quad \mathbb{M}_{z}^{B} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ 2 \\ 0 \\ -5 \end{pmatrix} \right\rangle, \leftarrow \text{Generalized!}$$

$$\left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\rangle, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle.$$

Definition

The *tangential rank* of F is the minimal $r \in \mathbb{N}$ such that

$$F = \sum_{i=1}^k \lambda_i L_i^{d-1} L_{s+i} + \sum_{i=k+1}^s \lambda_i L_i^d$$

with k + s = r and $k \le s$. Such a decomposition for which r is minimal is a *tangential decomposition* of F.

Proposition

Let $I = 1 + I_1 x_1 + \dots + I_n x_n \in R_{\leq 1}$ and $g = 1 + g_1 x_1 + \dots + g_n x_n \in R_{\leq 1}$. For every $d \in \mathbb{Z}_{\geq 1}$ we have

$$\tau(I^{d-1}g)=\mathbb{1}_I+\frac{1}{d}\mathbb{1}_I\circ\left[\sum_{i=1}^n(g_i-I_i)\frac{\partial}{\partial x_i}\right]\in R_{\leq d}^*.$$

Tangential decomposition

Proposition

Let $I = 1 + I_1 x_1 + \dots + I_n x_n \in R_{\leq 1}$ and $g = 1 + g_1 x_1 + \dots + g_n x_n \in R_{\leq 1}$. For every $d \in \mathbb{Z}_{\geq 1}$ we have

$$\tau(I^{d-1}g)=\mathbb{1}_I+\frac{1}{d}\mathbb{1}_I\circ\left[\sum_{i=1}^n(g_i-I_i)\frac{\partial}{\partial x_i}\right]\in R_{\leq d}^*.$$

Theorem

Let $\Lambda \in \mathbb{R}^*$ be an extension of $f^* \in \mathbb{R}^*_{< d}$ with $F = L^{d-1}G$. Then

- The common eigenvector of $M_{x_i}^t$ is $\mathbb{1}_l$.
- ► The generalized rank-2 eigenvector of each $M_{\chi_j}^t$ is $\mathbb{1}_l \circ \left[\sum_{i=1}^n (g_i l_i) \frac{\partial}{\partial x_i} \right]$.

Algorithm

Tangential decomposition

Input: A homogeneous polynomial $F(x_0, x_1, ..., x_n)$ of degree d. **Output:** A minimal decomposition of F as

$$F = \sum_{i=1}^k \lambda_i L_i^{d-1} L_{s+i} + \sum_{i=k+1}^s \lambda_i L_i^d.$$

- Construct the matrix $\mathbb{H}_{\Lambda}(\mathbf{h})$ with the parameters $\mathbf{h} = \{h_{\alpha}\}_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha| > d}}$
- Set $r := \operatorname{rk} \mathbb{H}_{f^*}^{\square}$.
- repeat
 - 1. Compute a set B of a complete staircase monomials with |B| = r.
 - 2. Find parameters **h** s.t. $\det(\mathbb{H}_{\Lambda}^{B}) \neq 0$ and the operators $\mathbb{M}_{i} = \mathbb{H}_{x_{i} \star \Lambda}^{B} (\mathbb{H}_{\Lambda}^{B})^{-1}$ commute.
 - 3. If there is no solution, restart the loop with r := r + 1.
 - 4. Else compute the $\frac{r}{2} \le s \le r$ eigenvectors of a generic $\sum_i \alpha_i \mathbb{M}_i^B$. **until** There are r s distinct generalized of rank up to 2 eigenvectors v_{s+1}, \ldots, v_r common to \mathbb{M}_i^B 's such that
 - they have rank 2 for at least one \mathbb{M}_{i}^{B} ,
 - when they have rank 2, their chain is always $\{v_{s+i}, v_i\}$.
- Solve the linear system in $\lambda_1, \ldots, \lambda_r$: $F = \sum_{i=1}^{r-s} v_i^{d-1} (\lambda_i v_i + \lambda_{s+i} v_{s+i}) + \sum_{i=r-s+1}^{s} \lambda_i v_i^d.$

Tangential decomposition

$$F = -2x^7 - 4x^6y + 92x^6z + 15x^5y^2 - 675x^5z^2 - 20x^4y^3 + 2700x^4z^3 + 15x^3y^4 - 6075x^3z^4 - 6x^2y^5 + 7290x^2z^5 + xy^6 - 3645xz^6.$$

Tangential decomposition

$$F = -2x^7 - 4x^6y + 92x^6z + 15x^5y^2 - 675x^5z^2 - 20x^4y^3 + 2700x^4z^3$$

$$15x^3y^4 - 6075x^3z^4 - 6x^2y^5 + 7290x^2z^5 + xy^6 - 3645xz^6.$$

Check r = 6 and $B = \{1, y, z, y^2, z^2, v^3\}.$

Tangential decomposition

$$F = -2x^7 - 4x^6y + 92x^6z + 15x^5y^2 - 675x^5z^2 - 20x^4y^3 + 2700x^4z^3$$

$$15x^3y^4 - 6075x^3z^4 - 6x^2y^5 + 7290x^2z^5 + xy^6 - 3645xz^6.$$

Check
$$r = 6$$
 and $B = \{1, y, z, y^2, z^2, y^3\}.$

Common eigenvectors of
$$(\mathbb{M}_{\mathbb{Z}}^{\mathcal{B}})^t$$
 and $(\mathbb{M}_{\mathbb{Z}}^{\mathcal{B}})^t$: $(1,0,0,0,0,0)$, $(1,-1,0,1,0,-1)$, $(1,0,-3,0,9,0)$.

Tangential decomposition

$$F = -2x^7 - 4x^6y + 92x^6z + 15x^5y^2 - 675x^5z^2 - 20x^4y^3 + 2700x^4z^3$$

$$15x^3y^4 - 6075x^3z^4 - 6x^2y^5 + 7290x^2z^5 + xy^6 - 3645xz^6.$$

Check
$$r = 6$$
 and $B = \{1, y, z, y^2, z^2, y^3\}.$

Common eigenvectors of $(\mathbb{M}_{y}^{B})^{t}$ and $(\mathbb{M}_{z}^{B})^{t}$: (1,0,0,0,0,0), (1,-1,0,1,0,-1), (1,0,-3,0,9,0). generalized eigenspaces:

$$(\mathbb{M}^{\mathcal{B}}_{y})^{t} : \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 2 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \\ 9 \\ 0 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ -9 \\ 0 \end{pmatrix} \right\rangle. \\ (\mathbb{M}^{\mathcal{B}}_{z})^{t} : \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ 0 \\ -9 \\ 0 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ -9 \\ 0 \end{pmatrix} \right\rangle.$$

$$F = 2x^{6}(x + y + z) + (x - y)^{6}x - 5(x - 3z)^{6}x.$$

What we can learn more and more

Cactus decomposition

$$F = (x^2 + y^2 + 6xz - 8z^2)(4x - y - 5z)$$

Cactus decomposition

$$F = (x^2 + y^2 + 6xz - 8z^2)(4x - y - 5z)$$

Start with r = 3,

Cactus decomposition

$$F = (x^2 + y^2 + 6xz - 8z^2)(4x - y - 5z)$$

Start with r = 3,

 $(\mathbb{M}_y B)^t$ and $(\mathbb{M}_z B)^t$ commute and there is a unique common eigenvector: (4,-1,-5)

Cactus decomposition

$$F = (x^2 + y^2 + 6xz - 8z^2)(4x - y - 5z)$$

Start with r = 3,

 $(\mathbb{M}_y B)^t$ and $(\mathbb{M}_z B)^t$ commute and there is a unique common eigenvector: (4, -1, -5)

$$F = (x^2 + y^2 + 6xz - 8z^2)(4x - y - 5z)$$

Start with r = 3, $(\mathbb{M}_y B)^t$ and $(\mathbb{M}_z B)^t$ commute and there is a unique common eigenvector: (4, -1, -5) and both their Jordan decompositions have 1 rank-3 block.

$$F = (x^2 + y^2 + 6xz - 8z^2)(4x - y - 5z)$$

Start with r = 3,

 $(\mathbb{M}_y B)^t$ and $(\mathbb{M}_z B)^t$ commute and there is a unique common eigenvector: (4, -1, -5) and both their Jordan decompositions have 1 rank-3 block.

Since r/2 > 1 there is no tg. decomposition for F with r = 3, i.e.

$$F \neq L_1^{3-1}L_2 + L_3^3$$

for any linear form L_1, L_2, L_3 .

Cactus decomposition

$$F = (x^2 + y^2 + 6xz - 8z^2)(4x - y - 5z)$$

Start with r = 3,

 $(\mathbb{M}_y B)^t$ and $(\mathbb{M}_z B)^t$ commute and there is a unique common eigenvector: (4, -1, -5) and both their Jordan decompositions have 1 rank-3 block.

Since r/2 > 1 there is no tg. decomposition for F with r = 3, i.e.

$$F \neq L_1^{3-1}L_2 + L_3^3$$

for any linear form L_1, L_2, L_3 .

Claim: Since we did not fill any **h**, this is the unique decomposition of *F* of type

$$F = L^{3-2}N$$

with N a quadratic form.

So, to recover N, it is sufficient to solve a linear system:

$$F = (ax^2 + bxy + cxz + dy^2 + eyz + fz^2)(4x - y - 5z)$$

Non-definition (yet)

A cactus decomposition of $F \in R_d$ is a "minimal" way of writing F as

$$F = \sum_{i=1}^{s} L_i^{d-k_i} N_i$$

with $N_i \in R_{k_i}$.

Non-definition (yet)

A cactus decomposition of $F \in R_d$ is a "minimal" way of writing F as

$$F = \sum_{i=1}^{s} L_i^{d-k_i} N_i$$

with $N_i \in R_{k_i}$.

MINIMAL in which sense?

Proposition

 $F = \sum_{i=1}^{s} L_i^{d-k_i} N_i$ iff $\exists \zeta_1, \dots, \zeta_s \in \mathbb{K}^n$, an extension $\Lambda \in R^*$ of $f^* \in R^*_{\leq d}$ and $\{p_i\}_{i \in \{1, \dots, d\}} \subseteq R$ s.t.

$$\Lambda = \sum_{i=1}^{s} \mathbb{1}_{\zeta_i} \circ \rho_i(\delta). \tag{1}$$

Proposition

 $F = \sum_{i=1}^{s} L_i^{d-k_i} N_i$ iff $\exists \zeta_1, \dots, \zeta_s \in \mathbb{K}^n$, an extension $\Lambda \in R^*$ of $f^* \in R^*_{\leq d}$ and $\{p_i\}_{i \in \{1,\dots,d\}} \subseteq R$ s.t.

$$\Lambda = \sum_{i=1}^{s} \mathbb{1}_{\zeta_i} \circ p_i(\delta). \tag{1}$$

Definition

Λ as in (1) such that

$$r = \bigoplus_{i=1}^s \underbrace{\dim_{\mathbb{K}} \langle \{\mathbb{1}_{\zeta_i} \circ \partial^{\alpha} p_i\}_{|\alpha| \leq \deg p_i} \rangle_{\mathbb{K}}}_{:=r_i = \text{mult} \, \mathbb{1}_{\zeta_i}}.$$

is minimal, is called a *generalized decomposition of* f^* .

Cactus decomposition

Proposition

 $F = \sum_{i=1}^{s} L_i^{d-k_i} N_i$ iff $\exists \zeta_1, \dots, \zeta_s \in \mathbb{K}^n$, an extension $\Lambda \in R^*$ of $f^* \in R^*_{\leq d}$ and $\{p_i\}_{i \in \{1,\dots,d\}} \subseteq R$ s.t.

$$\Lambda = \sum_{i=1}^{s} \mathbb{1}_{\zeta_i} \circ \rho_i(\delta). \tag{1}$$

Definition

Λ as in (1) such that

$$r = \bigoplus_{i=1}^{s} \underbrace{\dim_{\mathbb{K}} \langle \{\mathbb{1}_{\zeta_{i}} \circ \partial^{\alpha} p_{i}\}_{|\alpha| \leq \deg p_{i}} \rangle_{\mathbb{K}}}_{:=r_{i} = \text{mult } \mathbb{1}_{\zeta_{i}}}.$$

is minimal, is called a *generalized decomposition of* f^* .

Definition and Theorem [-,B,M]

The minimal r for which there exists a generalized decomposition of $f^* \in R_d$ is the *cactus rank* of F.

Proposition

Let $\Lambda = \sum_{i=1}^{s} \mathbb{1}_{\zeta_i} \circ p_i(\delta)$ be a generalized decomposition of f^* . Then there exist $k_i \in \mathbb{K}$, $N_i \in R_{k_i}$ such that F can be written as

$$F = \sum_{i=1}^{s} L_i^{d-k_i} N_i. \tag{*}$$

(*) is called a cactus decomposition of F.

Proposition

Cactus decomposition

Let $\Lambda = \sum_{i=1}^{s} \mathbb{1}_{\zeta_i} \circ p_i(\delta)$ be a generalized decomposition of f^* . Then there exist $k_i \in \mathbb{K}$, $N_i \in R_{k_i}$ such that F can be written as

$$F = \sum_{i=1}^{s} L_i^{d-k_i} N_i. \tag{*}$$

(*) is called a cactus decomposition of F.

Can we recover a cactus decomposition of a given $F \in R_d$?

[BCMT] Theorem

Let $F \in R_d$.

The minim r for which \exists an extension $\land \in R^*$ of f^* with $rkH_{\land} = r$

The minimum r which allows to fill $\mathbb{H}_{\Lambda}(\mathbf{h})$ in order to have commuting multiplication operators.

[BCMT] Theorem

Let $F \in R_d$.

The minim r for which \exists an extension $\land \in R^*$ of f^* with $rkH_{\land} = r$

The minimum r which allows to fill $\mathbb{H}_{\Lambda}(\mathbf{h})$ in order to have commuting multiplication operators.

Find commuting operators \Rightarrow read the $\mathbb{1}_{\zeta_i}$'s as the common rank-1 eigenvectors for the $M_{x_i}^t$.

Algorithm Cactus rank

Input: A homogeneous polynomial $F(x_0, x_1, ..., x_n)$ of degree d. **Output:** The cactus rank of F and the L_i s.t. $F = \sum_{i=1}^k \lambda_i L_i^{d-k_i} N_i$ is a cactus decomposition of F.

- Construct the matrix $\mathbb{H}_{\Lambda}(\mathbf{h})$ with the parameters $\mathbf{h} = \{h_{\alpha}\}_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha| > d}}$
- Set $r := \operatorname{rk} \mathbb{H}_{f^*}^{\square}$.
 - 1. Compute a set *B* of a complete staircase monomials with |B| = r.
 - 2. Find parameters **h** s.t. $\det(\mathbb{H}_{\Lambda}^{B}) \neq 0$ and the operators $\mathbb{M}_{i} = \mathbb{H}_{X_{i} + \Lambda}^{B}(\mathbb{H}_{\Lambda}^{B})^{-1}$ commute.
 - 3. If there is no solution, restart the loop with r := r + 1.
- ► Else **Output 1)** *r* is the cactus rank of *F*.
 - 4 Compute the eigenvectors v_1, \ldots, v_s of a generic $\sum_i \alpha_i \mathbb{M}_i^B$.
- ▶ Output 2) $L_i := v_i, i = 1, ..., s$.

Cactus decomposition

Recall

Definition

The minimal $r = \bigoplus_{i=1}^{s} \underbrace{\dim_{\mathbb{K}} \langle \{\mathbb{1}_{\zeta_{i}} \circ \partial^{\alpha} p_{i}\}_{|\alpha| \leq \deg p_{i}} \rangle_{\mathbb{K}}}_{:=r_{i} = \operatorname{mult} \mathbb{1}_{\zeta_{i}}}$ for which there exists

a generalized decomposition of $F \in R_d$ is the *cactus rank* of F.

Recall

Definition

The minimal $r = \bigoplus_{i=1}^{s} \underbrace{\dim_{\mathbb{K}} \langle \{\mathbb{1}_{\zeta_{i}} \circ \partial^{\alpha} p_{i}\}_{|\alpha| \leq \deg p_{i}} \rangle_{\mathbb{K}}}_{:=r_{i} = \text{mult } \mathbb{1}_{\zeta_{i}}}$ for which there exists

a generalized decomposition of $F \in R_d$ is the *cactus rank* of F.

The last thing that we can do is to recover each r_i .

 $F \in R_d$, $\Lambda = \sum_{i=1}^s \mathbb{1}_{\zeta_i} \circ p_i(\delta) \in R^*$ a generalized decomposition of f^* .

Theorem

For every $j \in \{1, ..., n\}$ and every $\alpha \in \mathbb{N}^n$ the element

$$\mathbb{1}_{\zeta_i} \circ (\partial^{\alpha} p_i)(\delta) \in \mathcal{A}^*_{\Lambda}$$

is either the zero map or a generalized eigenvector common to every $M_{x_j}^t$ with eigenvalue $(\zeta_i)_j$.

Cactus decomposition

 $F \in R_d$, $\Lambda = \sum_{i=1}^s \mathbb{1}_{\zeta_i} \circ p_i(\delta) \in R^*$ a generalized decomposition of f^* .

Theorem

For every $j \in \{1, ..., n\}$ and every $\alpha \in \mathbb{N}^n$ the element

$$\mathbb{1}_{\zeta_i} \circ (\partial^{\alpha} p_i)(\delta) \in \mathcal{A}_{\Lambda}^*$$

is either the zero map or a generalized eigenvector common to every $M_{\mathbf{x}_i}^t$ with eigenvalue $(\zeta_i)_j$.

Corollary

If $V^j[\mu]$ is the generalized eigenspace of $M^t_{x_j}$ relative to the eigenvalue μ , then for every $i \in \{1,\ldots,s\}$ the multiplicity of $\mathbb{1}_{\zeta_i}$ is given by

$$\operatorname{mult} \mathbb{1}_{\zeta_i} = \dim_{\mathbb{K}} \cap_{j=1}^n V^j[(\zeta_i)_j].$$

Back to a previous example

Tangential decomposition was cactus

$$\begin{split} F &= 2x^6 \big(x + y + z \big) + (x - y)^6 x - 5(x - 3z)^6 x. \\ \text{Common eigenvectors of } \big(\mathbb{M}^B_y \big)^t \text{ and } \big(\mathbb{M}^B_z \big)^t \colon \\ v_1 &= (1,0,0,0,0,0) \in V^y \big[0 \big], \, V^z \big[0 \big], \\ v_2 &= (1,-1,0,1,0,-1) \in V^y \big[-1 \big], \, V^z \big[0 \big], \\ v_3 &= (1,0,-3,0,9,0) \in V^y \big[0 \big], \, V^z \big[-3 \big]. \end{split}$$

Back to a previous example

Tangential decomposition was cactus

$$\begin{split} F &= 2x^6(x+y+z) + (x-y)^6x - 5(x-3z)^6x. \\ \text{Common eigenvectors of } (\mathbb{M}^B_y)^t \text{ and } (\mathbb{M}^B_z)^t: \\ v_1 &= (1,0,0,0,0,0) \in V^y[0], \ V^z[0], \\ v_2 &= (1,-1,0,1,0,-1) \in V^y[-1], \ V^z[0], \\ v_3 &= (1,0,-3,0,9,0) \in V^y[0], \ V^z[-3]. \\ \text{generalized eigenspaces:} \end{split}$$

$$(\mathbb{M}_{Z}^{\mathcal{B}})^{t} : \underbrace{\left(\left(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}\right), \begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}\right), \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ -9 \\ 0 \end{pmatrix}\right).$$

Input: A homogeneous polynomial $F(x_0, x_1, ..., x_n)$ of degree d. **Output:** All multiplicity of the $\mathbb{1}_{\zeta_i}$'s of the generalized decomposition of f^* .

- Construct the matrix $\mathbb{H}_{\Lambda}(\mathbf{h})$ with the parameters $\mathbf{h} = \{h_{\alpha}\}_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha| > d}}$.
- Set $r := \operatorname{rk} \mathbb{H}_{f^*}^{\square}$.
- ► Compute a set B of a complete staircase monomials with |B| = r.
- ► Find parameters **h** s.t. $\det(\mathbb{H}_{\Lambda}^{B}) \neq 0$ and the operators $\mathbb{M}_{i} = \mathbb{H}_{x_{i} + \Lambda}^{B} (\mathbb{H}_{\Lambda}^{B})^{-1}$ commute.
- If there is no solution, restart the loop with r := r + 1. Else r is the cactus rank of f.
- Compute the common eigenvectors v_1, \ldots, v_s of the \mathbb{M}_j^B 's and $V^j[(\zeta_1)_j]$ the generalized eigenspace of $M_{x_j}^t$ relative to the eigenvalue $(\zeta_1)_j$
- Output mult $\mathbb{1}_{\zeta_i} = \dim_{\mathbb{K}} \cap_{i=1}^n V^j[(\zeta_i)_i].$

• Get any cactus decomposition explicitly? $F = \sum_{i=1}^{s} \lambda_i L^{d-k_i} N_i$. (recovering the k_i 's? recovering the N_i 's?)

- Get any cactus decomposition explicitly? $F = \sum_{i=1}^{s} \lambda_i L^{d-k_i} N_i$. (recovering the k_i 's? recovering the N_i 's?)
- ▶ More selective choices of *B*? May these lead to bounds on *r*?

- Get any cactus decomposition explicitly? $F = \sum_{i=1}^{s} \lambda_i L^{d-k_i} N_i$. (recovering the k_i 's? recovering the N_i 's?)
- ► More selective choices of B? May these lead to bounds on r?
- How to deal with the h's?

- Get any cactus decomposition explicitly? $F = \sum_{i=1}^{s} \lambda_i L^{d-k_i} N_i$. (recovering the k_i 's? recovering the N_i 's?)
- ► More selective choices of *B*? May these lead to bounds on *r*?
- How to deal with the h's?
- Serious implementation? Complexity?

